• Laser & Optoelectronics Progress
  • Vol. 57, Issue 9, 092902 (2020)
Xin Pan, Zhangjun Wang*, Xiangqian Meng, Xiufen Wang, Chao Chen, Wei Deng, Xingtao Liu, Hui Li, Xianxin Li, and Quanfeng Zhuang
Author Affiliations
  • Institute of Oceanographic Instrumentation, Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, Shandong 266001, China
  • show less
    DOI: 10.3788/LOP57.092902 Cite this Article Set citation alerts
    Xin Pan, Zhangjun Wang, Xiangqian Meng, Xiufen Wang, Chao Chen, Wei Deng, Xingtao Liu, Hui Li, Xianxin Li, Quanfeng Zhuang. Particle Size Detection Technology Based on Imaging Polarization Nephelometer[J]. Laser & Optoelectronics Progress, 2020, 57(9): 092902 Copy Citation Text show less
    References

    [1] Shen J Q, Riebel U, Guo X A. Measurements of particle-size distribution and concentration by transmission fluctuation spectrometry with temporal correlation[J]. Optics Letters, 30, 2098-2100(2005).

    [2] Lee Black D. McQuay M Q, Bonin M P. Laser-based techniques for particle-size measurement: a review of sizing methods and their industrial applications[J]. Progress in Energy and Combustion Science, 22, 267-306(1996).

    [3] Szymanski W W, Nagy A, Czitrovszky A et al. A new method for the simultaneous measurement of aerosol particle size, complex refractive index and particle density[J]. Measurement Science and Technology, 13, 303-307(2002).

    [4] Canakci A, Erdemir F, Varol T et al. Determining the effect of process parameters on particle size in mechanical milling using the Taguchi method: measurement and analysis[J]. Measurement, 46, 3532-3540(2013).

    [5] Hu M, Xie J L, Wu D F et al. Measurement of PM2.5 concentration based on the charge-coupled device backward scattering lidar[J]. Acta Optica Sinica, 35, 0201002(2015).

    [6] Chen Q, Liu W, Wang W J et al. Particle sizing by the Fraunhofer diffraction method based on an approximate non-negatively constrained Chin-Shifrin algorithm[J]. Powder Technology, 317, 95-103(2017).

    [7] Song M, Liu P F, Hanna S J et al. Relative humidity-dependent viscosity of secondary organic material from toluene photo-oxidation and possible implications for organic particulate matterover megacities[J]. Atmospheric Chemistry and Physics, 16, 8817-8830(2016).

    [8] Mei L, Guan P. Yang, et al. Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique[J]. Optics Express, 25, A628-A638(2017).

    [9] Mei L, Kong Z, Ma T. Dual-wavelength Mie-scattering Scheimpflug lidar system developed for the studies of the aerosol extinction coefficient and the angstrom exponent[J]. Optics Express, 26, 31942-31956(2018).

    [10] Meng X Q, Pan X, Liu X T et al. Design and experimental verification of polar nephelometer based on imaging[J]. Chinese Journal of Lasers, 45, 0510009(2018).

    [11] Sudiarta I W, Chylek P. Mie-scattering formalism for spherical particles embedded in an absorbing medium[J]. Journal of the Optical Society of America A, 18, 1275-1278(2001).

    [12] Barnes J E. Parikh Sharma N C, Kaplan T B. Atmospheric aerosol profiling with a bistatic imaging lidar system[J]. Applied Optics, 46, 2922-2929(2007).

    [13] Liu X Y, Fang J Y, Li L et al. Aerosol detection method based on wide-range particle spectrometer[J]. Acta Photonica Sinica, 45, 0501002(2016).

    [14] Nakagawa M, Nakayama T, Sasago H et al. Design and characterization of a novel single-particle polar nephelometer[J]. Aerosol Science and Technology, 50, 392-404(2016).

    [15] Meng X Q, Hu S X, Wang Z Z et al. Vertical distribution of aerosol extinction coefficient detection in boundary layer using CCD lidar[J]. Acta Optica Sinica, 33, 0801003(2013).

    [16] Zheng F T, Hua D X, Zhou A. Empirical mode decomposition algorithm research & application of Mie lidar atmospheric backscattering signal[J]. Chinese Journal of Lasers, 36, 1068-1074(2009).

    [17] Sullenberger R M, Redmond S M, Crompton D et al. Spatially-resolved individual particle spectroscopy using photothermal modulation of Mie scattering[J]. Optics Letters, 42, 203-206(2017).

    [18] Vo Q S, Vo Quang Sang, Feng P, Tang B. 冯鹏, 汤斌, 等. 基于米氏散射理论的水中悬浮颗粒物散射特性计算[J]. 激光与光电子学进展, 52, 013001(2015). http://www.opticsjournal.net/Articles/Abstract?aid=OJ1412290000680GcIfL

          et alStudy on properties of light scattering based on Mie scattering theory for suspended particles in water[J]. Laser & Optoelectronics Progress, 52, 013001(2015).

    Xin Pan, Zhangjun Wang, Xiangqian Meng, Xiufen Wang, Chao Chen, Wei Deng, Xingtao Liu, Hui Li, Xianxin Li, Quanfeng Zhuang. Particle Size Detection Technology Based on Imaging Polarization Nephelometer[J]. Laser & Optoelectronics Progress, 2020, 57(9): 092902
    Download Citation