• Journal of Inorganic Materials
  • Vol. 36, Issue 2, 197 (2021)
Xu WANG1、2, Ming GU1, Jincheng LIAO1, Qingfeng SONG1, Xun SHI1, Shengqiang BAI1、*, and Lidong CHEN1、2
Author Affiliations
  • 11. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
  • 22. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.15541/jim20200126 Cite this Article
    Xu WANG, Ming GU, Jincheng LIAO, Qingfeng SONG, Xun SHI, Shengqiang BAI, Lidong CHEN. High Temperature Interfacial Stability of Fe/Bi0.5Sb1.5Te3 Thermoelectric Elements[J]. Journal of Inorganic Materials, 2021, 36(2): 197 Copy Citation Text show less
    References

    [1] H ZHANG Q, Y HUANG X, Q BAI S et al. Thermoelectric devices for power generation: recent progress and future challenges. Advanced Engineering Materials, 18, 194-213(2016).

    [2] X SHI, L CHEN, C UHER. Recent advances in high-performance bulk thermoelectric materials. International Materials Reviews, 61, 379-415(2016).

    [3] Z LU, H ZHANG, C MAO et al. Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Applied Energy, 164, 57-63(2016).

    [4] M ZEBARJADI, K ESFARJANI, M DRESSELHANS et al. Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environmental Science, 5, 5147-5162(2012).

    [5] J ZHU T. Recent advances in thermoelectric materials and devices. Journal of Inorganic Materials, 34, 233-236(2019).

    [6] H ZHANG Q, Q BAI S, D CHEN L. Technologies and applications of thermoelectric devices: current status, challenges and prospects. Journal of Inorganic Materials, 34, 0279-0294(2019).

    [7] F HAO, F QIU P, S TANG Y et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ℃. Energy Environmental Science, 9, 3120-3127(2016).

    [8] M YOON S, P DHARMAIAH, S KIM H et al. Investigation of thermoelectric properties with dispersion of Fe2O3 and Fe-85Ni nanospheres in Bi0.5Sb1.5Te3 matrix. Journal of Electronic Materials, 46, 2770-2777(2017).

    [9] J SHEN, Z YIN, S YANG et al. Improved thermoelectric performance of p-type bismuth antimony telluride bulk alloys prepared by hot forging. Journal of Electronic Materials, 40, 1095-1099(2011).

    [10] L HU, H GAO, X LIU et al. Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects. Journal of Materials Chemistry A, 22, 16484-16490(2012).

    [11] F FAN J, F CHEN L, Q BAI S et al. Joining of Mo to CoSb3 by spark plasma sintering by inserting a Ti interlayer. Materials Letters, 58, 3876-3878(2004).

    [12] S TANG Y, Q BAI S, D REN D et al. Interface structure and electrical property of Yb0.3Co4Sb12/Mo-Cu element prepared by welding using Ag-Cu-Zn solder. Journal of Inorganic Materials, 30, 256-260(2015).

    [13] S LIU W, Y LIU, F ZHE et al. Thermoelectric device: contact interface and interface materials. Journal of Inorganic Materials, 34, 0269-0279(2019).

    [14] G ZHAO D, L WANG, H CAI Y. One-step sintering of CoSb3 thermoelectric material and Cu-W alloy by spark plasma sintering. Materials Science Forum,. Switzerland, 610, 389-393(2009).

    [15] G ZHAO D, Y LI X, L HE et al. Interfacial evolution behavior and reliability evaluation of CoSb3/Ti/Mo-Cu thermoelectric joints during accelerated thermal aging. Journal of Alloys and Compounds, 477, 425-431(2009).

    [16] M GU, G XIA X, X LI et al. Microstructural evolution of the interfacial layer in the Ti-Al/Yb0.6Co4Sb12 thermoelectric joints at high temperature. Journal of Alloys and Compounds, 610, 665-670(2014).

    [17] W CHEN S, Y WU C, J WU H et al. Interfacial reactions in Sn/Bi2Te3, Sn/Bi2Se3 and Sn/Bi2(Te1-xSex)3 couples. Journal of Alloys and Compounds, 611, 313-318(2014).

    [18] W CHEN S, N CHIU C. Unusual cruciform pattern interfacial reactions in Sn/Te couples. Scripta Materialia, 56, 97-99(2007).

    [19] C LAN Y, Z WANG D, G CHEN et al. Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials. Applied Physics Letters, 92, 101910(2008).

    [20] Q CHEN L, Q MEI D, C WANG Y et al. Ni barrier in Bi2Te3- based thermoelectric modules for reduced contact resistance and enhanced power generation properties. Journal of Alloys and Compounds, 796, 314-320(2019).

    [21] W CHEN S, R YANG T, Y WU C et al. Interfacial reactions in the Ni/(Bi0.25Sb0.75)2Te3 and Ni/Bi2(Te0.9Se0.1)3 couples. Journal of Alloys and Compounds, 686, 847-853(2016).

    [22] W LIU, H WANG, L WANG et al. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications. Journal of Materials Chemistry A, 1, 13093-13100(2013).

    [23] P FENG S, H CHANG Y, J YANG et al. Reliable contact fabrication on nanostructured Bi2Te3-based thermoelectric materials. Phys. Chem. Chem. Phys., 15, 6757-6762(2013).

    [24] C LIN W, S LI Y, T WU A. Study of diffusion barrier for solder/n-Type Bi2Te3and bonding strength for p- and n-type thermoelectric modules. Journal of Electronic Materials, 47, 148-154(2017).

    [25] E SONG, S SWRTZENTRUBER B, R KORIPELLA C et al. Highly effective GeNi alloy contact diffusion barrier for BiSbTe long-term thermal exposure. ACS Omega, 4, 9376-9382(2019).

    [26] H WANG C, C HEIEH H, Y LEE H et al. Co-P diffusion barrier for p-Bi2Te3 thermoelectric material. Journal of Electronic Materials, 48, 53-57(2018).

    [27] P LIN W, E WESOLOWSKI D, C LEE C. Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules. Journal of Materials Science: Materials in Electronics, 22, 1313-1320(2011).

    [28] H HSU H, H CHENG C, L LIN Y et al. Structural stability of thermoelectric diffusion barriers: experimental results and first principles calculations. Applied Physics Letters, 103, 053902(2013).

    [29] H BAE N, S HAN, E LEE K et al. Diffusion at interfaces of micro thermoelectric devices. Current Applied Physics, 11, 40-44(2011).

    [30] T KACSICH, E KOLAWA, J FLEURIAL et al. Films of Ni-7at% V, Pd, Pt and Ta-Si-N as diffusion barriers for copper on. Journal of Physics D: Applied Physics, 31, 2406-2409(1998).

    [31] M GU, Q BAI S, J WU et al. A high-throughput strategy to screen interfacial diffusion barrier materials for thermoelectric modules. Journal of Materials Research, 34, 1179-1187(2019).

    [32] M GU, X XIA, X HUANG et al. Study on the interfacial stability of p-type Ti/CeyFexCo4-xSb12 thermoelectric joints at high temperature. Journal of Alloys Compounds, 671, 238-244(2016).

    [33] G YAMAGUCHI, M SHIMADA, M KOIZUMI et al. Preparation and characterization of compounds of the system Fe(Sb1-xTex)2(0≤x≤1.0). Journal of Solid State Chemistry, 34, 241-245(1980).

    [34] H ZHANG G, C LIAO J, S TANG Y et al. Interface stability of skutterudite thermoelectric materials/Ti88Al12. Journal of Inorganic Materials, 33, 889-894(2018).

    Xu WANG, Ming GU, Jincheng LIAO, Qingfeng SONG, Xun SHI, Shengqiang BAI, Lidong CHEN. High Temperature Interfacial Stability of Fe/Bi0.5Sb1.5Te3 Thermoelectric Elements[J]. Journal of Inorganic Materials, 2021, 36(2): 197
    Download Citation