• Infrared and Laser Engineering
  • Vol. 48, Issue 2, 222002 (2019)
Bai Xiuli1、2、*, Chen Heming1, and Zhang Lingfei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201948.0222002 Cite this Article
    Bai Xiuli, Chen Heming, Zhang Lingfei. Circular photonic crystal fiber supporting orbital angular momentum modes transmission[J]. Infrared and Laser Engineering, 2019, 48(2): 222002 Copy Citation Text show less
    References

    [1] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics & Photonics, 2011, 3(2): 161-204.

    [2] Gao Chunqing, Zhang Shikun, Fu Shiyao, et al. Adaptive optics wavefront correction techniques of vortex beams[J]. Infrared and Laser Engineering, 2017, 46(2): 0201001. (in Chinese)

    [3] Bozinovic N, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers [J]. Science, 2013, 340(6140): 1545-1548.

    [4] Bu Jing, Zhang Lichao, Dou Xiujie, et al. Generation and application of optical vortices with arbitrary topological charges[J]. Infrared and Laser Engineering, 2017, 46(6): 0634001. (in Chinese)

    [5] Gregg P, Kristensen P, Golowich S E, et al. Stable transmission of 12 OAM states in air-core fiber[C]//CLEO, 2013: CTu2K.2.

    [6] Ung B, Vaity P, Wang L, et al. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes[J]. Optics Express, 2014, 22(15): 18044-18055.

    [7] Brunet C, Ung B, Messaddeq Y, et al. Design of an optical fiber supporting 16 OAM modes[C]//OFC, 2014: TH2A.24.

    [8] Yue Y, Zhang L, Yan Y, et al. Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber[J]. Optics Letters, 2012, 37(11): 1889-1891.

    [9] Wong G K, Kang M S, Lee H W, et al. Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber [J]. Science, 2012, 337(6093): 446.

    [10] Zhang Lingxiang, Wei Wei, Zhang Zhiming, et al. Propagation properties of vortex beams in a ring photonic crystal fiber[J]. Acta Physica Sinica, 2017, 66(1): 14205. (in Chinese)

    [11] Hu Z A, Huang Y Q, Luo A P, et al. Photonic crystal fiber for supporting 26 orbital angular momentum modes[J]. Optics Express, 2016, 4(15): 17285-17291.

    [12] Tian W, Zhang H, Zhang X, et al. A circular photonic crystal fiber supporting 26 OAM modes[J]. Optical Fiber Technology, 2016, 30: 184-189.

    [13] Lou Yan, Chen Chunyi, Zhao Yiwu, et al. Characteristics of Gaussian vortex beam in atmospheric turbulence transmission[J]. Chinese Optics, 2017, 10(6): 768-776. (in Chinese)

    [14] Ramachandran S, Kristensen P, Yan M F. Generation and propagation of radially polarized beams in optical fibers [J]. Optics Letters, 2009, 34(16): 2525-2527.

    [15] Brunet C, Vaity P, Messaddeq Y, et al. Design, fabrication and validation of an OAM fiber supporting 36 states[J]. Optics Express, 2014, 22(21): 26117-26127.

    [16] Maji P S, Chaudhuri P R. Circular photonic crystal fibers: numerical analysis of chromatic dispersion and losses[J]. Isrn Optics, 2013, 2013(4): 1-9.

    [17] Saitoh K, Florous N, Koshiba M. Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses [J]. Optics Express, 2005, 13(21): 8365-8371.

    [18] Inci H D, Ozsoy S. Birefringence, dispersion and loss properties for PCFs with rectangular air-holes [J]. Infrared Physics & Technology, 2014, 67: 354-358.

    [19] Jiang G, Fu Y, Huang Y. High birefringence rectangular-hole photonic crystal fiber[J]. Optical Fiber Technology, 2015, 26: 163-171.

    Bai Xiuli, Chen Heming, Zhang Lingfei. Circular photonic crystal fiber supporting orbital angular momentum modes transmission[J]. Infrared and Laser Engineering, 2019, 48(2): 222002
    Download Citation