• Photonic Sensors
  • Vol. 13, Issue 2, 230202 (2023)
Nazmi A. MOHAMMED1, Omar E. KHEDR2、3、*, El-Sayed M. EL-RABAIE3, and Ashraf A. M. KHALAF4
Author Affiliations
  • 1Department of Electronics and Communication Engineering, Medina Higher Institute for Engineering and Technology, Giza 12947, Egypt
  • 2Department of Communications and Electronics, Alexandria Higher Institute for Engineering and Technology, Alexandria 21311, Egypt
  • 3Department of Electronics and Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt
  • 4Department of Communications and Electronics, Faculty of Engineering, Minia University, Minia 61111, Egypt
  • show less
    DOI: 10.1007/s13320-023-0675-z Cite this Article
    Nazmi A. MOHAMMED, Omar E. KHEDR, El-Sayed M. EL-RABAIE, Ashraf A. M. KHALAF. High-Sensitivity Early Detection Biomedical Sensor for Tuberculosis With Low Losses in the Terahertz Regime Based on Photonic Crystal Fiber Technology[J]. Photonic Sensors, 2023, 13(2): 230202 Copy Citation Text show less
    References

    [1] N, A. Mohammed, O. E. Khedr, E. M. El-Rabaie, and A. A. M. Khalaf, “Brain tumors biomedical sensor with high-quality factor and ultra-compact size based on nanocavity 2D photonic crystal,” Alexandria Engineering Journal, 2022 (https://doi.org/10.1016/j.aej.2022.09.020).

    [2] N. A. Mohamed, A. M. Aly, A. K. AboulSeoud, and M. H. Aly, “Indoor wireless optical communication systems: effect of ambient noise,” Optical Engineering, 2014, 53: 055109.

    [3] K. A. Badawi, N. A. Mohammed, and M. H. Aly, “Exploring BER performance of a SC-LPPM based LOS-VLC system with distinctive lighting,” Journal of Optoelectronics and Advanced Materials, 2018, 20(5–6): 290–301.

    [4] N. A. Mohammed and K. A. Badawi, “Design and performance evaluation for a non-line of sight VLC dimmable system based on SC-LPPM,” IEEE Access, 2018, 6: 52393–52405.

    [5] N. A. Mohammed and M. A. Elkarim, “Exploring the effect of diffuse reflection on indoor localization systems based on RSSI-VLC,” Optics Express, 2015, 23(16): 20297–20313.

    [6] M. A. Elkarim, N. A. Mohammed, and M. H. Aly, “Exploring the performance of indoor localization systems based on VLC-RSSI, including the effect of NLOS components using two light-emitting diode lighting systems,” Optical Engineering, 2015, 54(10): 105110.

    [7] N. A. Mohammed, K. A. Badawi, A. A. M. Khalaf, and S. El-Rabaie, “Dimming control schemes combining IEEE 802.15.7 and SC-LPPM modulation schemes with an adaptive M-QAM OFDM for indoor LOS VLC systems,” Opto-Electronics Review, 2020, 28: 203–212.

    [8] N. A. Mohammed, M. M. Elnabawy, and A. A. M. Khalaf, “PAPR reduction using a combination between precoding andnon-linear companding techniques for ACO-OFDM-based VLC systems,” Opto-Electronics Review, 2021, 29: 59–70.

    [9] M. I. Shehata and N. A. Mohammed, “Design and optimization of novel two inputs optical logic gates (NOT, AND, OR, and NOR) based on single commercial TW-SOA operating at 40 Gbit/s,” Optical and Quantum Electronics, 2016, 48(6): 1–16.

    [10] N. A. Mohammed and H. O. El Serafy, “Ultra-sensitive quasi-ditributed temperature sensor based on an apodized fiber Bragg grating,” Applied Optics, 2018, 57(2): 273–282.

    [11] N. A. Mohammed, M. N. Okasha, and H. M. Aly, “A wideband apodized FBG dispersion compensator in long haul WDM systems,” Journal of Optoelectronics and Advanced Materials, 2016, 18(5–6): 475–479.

    [12] N. A. Mohammed and N. M. Okasha, “Single-and dual-band dispersion compensation unit using apodized chirped fiber Bragg grating,” Journal of Computational Electronics, 2018, 17(1): 349–360.

    [13] N. A. Mohammed, H. S. Abo Elnasr, and M. H. Aly, “Analysis and design of an electro-optic 2 × 2 switch using Ti: KNbO3 as a waveguide based on MZI at 1.3 μm,” Optical and Quantum Electronics, 2014, 46(2): 295–304.

    [14] N. A. Mohammed, H. S. A. Elnasr, and M. H. Aly, “Performance evaluation and enhancement of 2×2 Ti: LiNbO3 Mach-Zehnder interferometer switch at 1.3 μm and 1.55 μm,” The Open Electrical & Electronic Engineering Journal, 2012, 6(1): 36–49.

    [15] A. S. El-Wakeel, N. A. Mohammed, and M. H. Aly, “Free space optical communications system performance under atmospheric scattering and turbulence for 850 and 1550 nm operation,” Applied Optics, 2016, 55(26): 7276–7286.

    [16] N. A. Mohammed, M. R. Abaza, and M. H. Aly, “Improved performance of M-ary PPM in different free-space optical channels due to reed solomon code using APD,” International Journal of Scientific & Engineering Research, 2011, 2(4): 82–85.

    [17] N. A. Mohammed and A. H. Mansi, “Performance enhancement and capacity enlargement for a DWDM-PON system utilizing an optimized cross seeding rayleigh backscattering design,” Applied Sciences, 2019, 9(21): 4520.

    [18] Y. Zhang, Y. Zhao, and R. Lv, “A review for optical sensors based on photonic crystal cavities,” Sensors and Actuators A: Physical, 2015, 233:374–389.

    [19] Y. Zhang, Y. Zhao, T. Zhou, and Q. Wu, “Applications and developments of on-chip biochemical sensors based on optofluidic photonic crystal cavities,” Lab on a Chip, 2018, 18(1): 57–74.

    [20] W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Optics Express, 2013, 21(3): 3861–3871.

    [21] F. Sun, B. Dong, J. Wei, Y. Ma, H. Tian, and C. Lee, “Demonstration of mid-infrared slow light onedimensional photonic crystal ring resonator with high- order photonic bandgap,” Optics Express, 2020, 28: 30736–30747.

    [22] H. Sharifi, S. M. Hamidi, and K. Navi, “All-optical photonic crystal logic gates using nonlinear directional coupler,” Photonics and Nanostructures-Fundamentals and Applications, 2017, 27: 55–63.

    [23] J. Divya, S. Selvendran, and A. S. Raja, “Two-dimensional photonic crystal ring resonatorbased channel drop filter for CWDM application,” Photonic Network Communications, 2018, 35: 353–363.

    [24] M. Li, J. Ling, Y. He, U. A. Javid, S. Xue, and Q. Lin, “Lithium niobate photonic-crystal electro-optic modulator,” Nature Communications, 2020, 11(1): 1–8.

    [25] G. Marty, S. Combrié, F. Raineri, and A. D. Rossi, “Photonic crystal optical parametric oscillator,” Nature Photonics, 2021, 15(1): 53–58.

    [26] R. Rajasekar, K. Parameshwari, and S. Robinson, “Nano-optical switch based on photonic crystal ring resonator,” Plasmonics, 2019, 14(6): 1687–1697.

    [27] T. S. Mostafa, N. A. Mohammed, and E. El-Rabaie, “Ultra-high bit rate all-optical AND/OR logic gates based on photonic crystal with multi-wavelength simultaneous operation,” Journal of Modern Optics, 2019, 66: 1005–1016.

    [28] M. M. Karkhanehchi, F. Parandin, and A. Zahedi, “Design of an all optical half-adder based on 2D photonic crystals,” Photonic Network Communications, 2017, 33: 159–165.

    [29] F. Parandin, R. Kamarian, and M. Jomour, “A novel design of all optical half-subtractor using a square lattice photonic crystals,” Optical and Quantum Electronics, 2021, 53(2): 1–10.

    [30] T. S. Mostafa, N. A. Mohammed, and E. S. M. El-Rabaie, “Ultracompact ultrafast-switching-speed all-optical 4 × 2 encoder based on photonic crystal,” Journal of Computational Electronics, 2019, 18: 279–292.

    [31] R. V. Nair and R. Vijaya, “Photonic crystal sensors: An overview,” Progress in Quantum Electronics, 2010, 34(3): 89–134.

    [32] N. Ayyanar, K. V. Sreekanth, G. T. Raja, and M. S. M. Rajan, “Photonic crystal fiber-based reconfigurable biosensor using phase change material,” IEEE Transactions on Nanobioscience, 2021, 20(3): 338–344.

    [33] S. A. Mitu, K. Ahmed, H. Abdullah, B. K. Paul, F. A. Al-Zahrani, S. K. Patel, et al., “Exploring the optical properties of exposed-core-based photonic-crystal fibers,” Journal of Computational Electronics, 2021, 20(3): 1260–1269.

    [34] R. Kanmani, K. Ahmed, S. Roy, F. Ahmed, B. K. Paul, and M. S. M. Rajan, “The performance of hosting and core materials for slotted core Q-PCF in terahertz spectrum,” Optik, 2019, 194: 163084.

    [35] M. Danaie and B. Kiani, “Design of a label-free photonic crystal refractive index sensor for biomedical applications,” Photonics and Nanostructures-Fundamentals and Applications, 2018, 31: 89–98.

    [36] A. Habib, A. Rashed, H. M. El-Hageen, and A. M. Alatwi, “Extremely sensitive photonic crystal fiber-based cancer cell detector in the terahertz regime,” Plasmonics, 2021, 16(4): 1297–1306.

    [37] S. A. Taya, “P-polarized surface waves in a slab waveguide with left-handed material for sensing applications,” Journal of Magnetism and Magnetic Materials, 2015, 377: 281–285.

    [38] S. A. Taya, “Ternary photonic crystal with left-handed material layer for refractometric application,” Opto-Electronics Review, 2018, 26(3): 236–241.

    [39] V. Devika and M. S. M. Rajan, “Hexagonal PCF of honeycomb lattice with high birefringence and high nonlinearity,” International Journal of Modern Physics B, 2020, 34(10): 2050094.

    [40] S. Singh, A. Upadhyay, D. Sharma, and S. A. Taya, “A comprehensive study of large negative dispersion and highly nonlinear perforated core PCF: theoretical insight,” Physica Scripta, 2022, 97(6): 65504.

    [41] J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technology Letters, 2014, 26(11): 1092–1095.

    [42] M. E. Rahaman, R. H. Jibon, H. S. Mondal, M. B. Hossain, A. A. M. Bulbul, and R. Saha, “Design and optimization of a PCF-based chemical sensor in THz regime,” Sensing and Bio-Sensing Research, 2021, 32: 100422.

    [43] Q. Liu, S. Li, and H. Chen, “Enhanced sensitivity of temperature sensor by a PCF with a defect core based on Sagnac interferometer,” Sensors and Actuators B: Chemical, 2018, 254: 636–641.

    [44] D. Chen, G. Hu, and L. Chen, “Dual-core photonic crystal fiber for hydrostatic pressure sensing,” IEEE Photonics Technology Letters, 2011, 23(24): 1851–1853.

    [45] D. Vigneswaran, N. Ayyanar, M. Sharma, M. Sumathi, M. Rajan, and K. Porsezian, “Salinity sensor using photonic crystal fiber,” Sensors and Actuators A: Physical, 2018, 269: 22–28.

    [46] M. Hossain and E. Podder, “Design and investigation of PCF-based blood components sensor in terahertz regime,” Applied Physics A, 2019, 125: 1–8.

    [47] A. Upadhyay, S. Singh, D. Sharma, and S. A. Taya, “A highly birefringent bend-insensitive porous core PCF for endlessly single-mode operation in THz regime: an analysis with core porosity,” Applied Nanoscience, 2021, 11: 1021–1030.

    [48] J. F. O’Hara, S. Ekin, W. Choi, and I. Song, “A perspective on terahertz next-generation wireless communications,” Technologies, 2019, 7(2): 43.

    [49] H. Thenmozhi, M. M. Rajan, V. Devika, D. Vigneswaran, and N. Ayyanar, “D-glucose sensor using photonic crystal fiber,” Optik, 2017, 145: 489–494.

    [50] A. Shafkat, A. N. Z. Rashed, H. M. El-Hageen, and A. M. Alatwi, “Design and analysis of a single elliptical channel photonic crystal fiber sensor for potential malaria detection,” Journal of Sol-Gel Science and Technology, 2021, 98(1): 202–211.

    [51] M. Islam, M. R. Islam, A. M. Al Naser, F. Anzum, and F. Z. Jaba, “Square structured photonic crystal fiber based THz sensor design for human body protein detection,” Journal of Computational Electronics, 2021, 20: 377–386.

    [52] M. Eid, A. N. Z. Rashed, A. A. M. Bulbul, and E. Podder, “Mono-rectangular core photonic crystal fiber (MRC-PCF) for skin and blood cancer detection,” Plasmonics, 2021, 16: 717–727.

    [53] A. A. M. Bulbul, H. Rahaman, S. Biswas, M. B. Hossain, and A. A. Nahid, “Design and numerical analysis of a PCF-based bio-sensor for breast cancer cell detection in the thz regime,” Sensing and Bio-Sensing Research, 2020, 30: 100388.

    [54] A. Upadhyay, S. Singh, D. Sharma, and S. A. Taya, “Analysis of proposed PCF with square air hole for revolutionary high birefringence and nonlinearity,” Photonics and Nanostructures-Fundamentals Applications, 2021, 43: 100896.

    [55] A. Upadhyay, S. Singh, D. Sharma, and S. A. Taya, “An ultra-high birefringent and nonlinear decahedron photonic crystal fiber employing molybdenum disulphide (MoS2): a numerical analysis,” Material Science and Engineering B, 2021, 270: 115236.

    [56] N. A. Mohammed, O. E. Khedr, E. S. M. El-Rabaie, and A. A. M. Khalaf, “Literature review: on-chip photonic crystals and photonic crystal fiber for biosensing and some novel trends,” IEEE Access, 2022, 10: 47419–47436.

    [57] W. H. Organization, “Global tuberculosis report 2021,” World Health Organization, 2021.

    [58] M. S. Islam, J. Sultana, A. Dinovitser, B. Ng, and D. Abbott, “A novel zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications,” Optics Communications, 2018, 413: 242–248.

    [59] A. A. M, Bulbul, F. Imam, M. Awal, and M. A. Mahmud, “A novel ultra-low loss rectangle-based porous-core PCF for efficient THz waveguidance: design and numerical analysis,” Sensors, 2020, 20: 6500.

    [60] H. El Hamzaoui, Y. Ouerdane, L. Bigot, G. Bouwmans, B. Capoen, A. Boukenter, et al., “Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimete,” Optics Express, 2012, 20(28): 29751–29760.

    [61] S. Atakaramians, S. Afshar, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, et al., “THz porous fibers: design, fabrication and experimental characterization,” Optics Express, 2009, 17(16): 14053–14062.

    [62] I. Ishida, T. Akamatsu, Z. Wang, Y. Sasaki, K. Takenaga, and S. Matsuo, “Possibility of stack and draw process as fabrication technology for multi-core fiber,” in Optical Fiber Communication Conference, United States, 2013, pp. 1–3.

    [63] Y. Luo, J. Canning, J. Zhang, and G. D. Peng, “Toward optical fibre fabrication using 3D printing technology,” Optical Fiber Technology, 2020, 58: 102299.

    [64] M. L. Shofner, F. J. Rodriguez-Macias, R. Vaidyanathan, and E. V. Barrera, “Single wall nanotube and vapor grown carbon fiber reinforced polymers processed by extrusion freeform fabrication,” Composites: Part A, 2003, 34: 1207–1217.

    [65] A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, et al., “Photonic crystal fibres for chemical sensing and photochemistry,” Chemical Society Reviews, 2013, 42(22): 8629–8248.

    [66] A. A. M. Bulbul, R. H. Jibon, S. Biswas, S. T. Pasha, and M. A. Sayeed, “Photonic crystal fiber-based blood components detection in THz regime: design and simulation,” Sensors International, 2021, 2: 100081.

    [67] M. S. Islam, J. Sultana, K. Ahmed, M. R. Islam, A. Dinovitser, B. W. H. Ng, et al., “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sensors Journal, 2017, 18(2): 575–582.

    [68] N. R. Ramanujam, S. K. Patel, N. M. Reddy, S. A. Taya, D. Vigneswaran, and M. S. M. Rajan, “One-dimensional ring mirror-defect photonic crystal for detection of mycobacterium tuberculosis bacteria,” Optik, 2020, 219: 165097.

    [69] A. H. Aly, D. Mohamed, Z. A. Zaky, Z. S. Matar, N. S. Abd El-Gawaad, A. S. Shalaby, et al., “Novel biosensor detection of tuberculosis based on photonic band gap materials,” Materials Research, 2021, 24(3).

    [70] S. A. Taya, M. G. Daher, I. Colak, and O. M. Ramahi, “Highly sensitive nano-sensor based on a binary photonic crystal for the detection of mycobacterium tuberculosis bacteria,” Journal of Materials Science: Materials in Electronics, 2021, 32: 28406–28416.

    [71] M. S. Mohamed, M. F. O. Hameed, N. F. F. Areed, M. M. El-Okr, and S. S. A. Obayya, “Analysis of highly sensitive photonic crystal biosensor for glucose monitoring,” The Applied Computational Electromagnetics Society Journal(ACES), 2016, 836–842.

    [72] K. Ahmed, M. I. Islam, B. K. Paul, M. S. Islam, S. Sen, S. Chowdhury, et al., “Effect of photonic crystal fiber background materials in sensing and communication applications,” Materials Discovery, 2017, 7: 8–14.

    [73] N. A. Mohammed, M. M. Hamed, A. A. M. Khalaf, and S. EL-Rabaie, “Malaria biosensors with ultrasensitivity and quality factor based on cavity photonic crystal designs,” The European Physical Journal Plus, 2020, 135(11): 933.

    [74] N. A. Mohammed, M. M. Hamed, A. A. M. Khalaf, A. Alsayyari, and S. El-Rabaie, “High-sensitivity ultra-quality factor and remarkable compact blood components biomedical sensor based on nanocavity coupled photonic crystal,” Results in Physics, 2019, 14: 102478.

    [75] S. K. Srivastava, C. J. M. Van Rijn, and M. A. Jongsma, “Biosensor-based detection of tuberculosis,” RSC Advances, 2016, 6(22): 17759–17771.

    [76] F. A. Al-Zamel, “Detection and diagnosis of Mycobacterium tuberculosis,” Expert Review of Anti Infective Therapy, 2009, 7(9): 1099–1108.

    [77] S. Gull and S. Akbar, “Artificial intelligence in brain tumor detection through MRI scans, advancements and challenges,” Artificial Intelligence and Internet of Things, 2021: 241–276.

    [78] A. H. Yassin, A. A. A. Nasser, R. AbdelRasoul, and O. E. Khedr, “Neural based prediction of scattering and noise parameters for solid state microwave transistors,” in 2014 31st National Radio Science Conference(NRSC), IEEE, Egypt, 2014, pp. 281–287.

    [79] E. H. Thomas, “Tuberculosis (TB) workup,” Medscape, 2022.

    [80] K. G. Castro, Goldberg, J. A. Jereb, P. LoBue, G. H. Mazurek, and A. Vernon, “Updated guidelines for using interferon gamma release assays to detect Mycobacterium tuberculosis infection-United States, 2010,” Recommendations and Reports, 2010, 59: 1–25.

    [81] M. Kruse and W. Cruikshank, “End TB strategy: time to move on from the skin test to the interferon-γ release assays,” American Journal of Public Health, 2019, 109(8): 1102–1104.

    [82] W. H. Organization, “Chest radiography in tuberculosis detection: summary of current WHO recommendations and guidance on programmatic approaches,” World Health Organization, 2016.

    [83] B. Datta, A. K. Prakash, D. Ford, P. K. Tanwar, P. Goyal, P. Chatterjee, et al., “Comparison of clinical and cost-effectiveness of two strategies using mobile digital x-ray to detect pulmonary tuberculosis in rural India,” BMC Public Health, 2019, 19(99): 1–8.

    [84] A. E. Nijhawan, P. A. Iroh, L. S. Brown, D. Winetsky, and E. Porsa, “Cost analysis of tuberculin skin test and the QuantiFERON-TB gold in-tube test for tuberculosis screening in a correctional setting in Dallas, Texas, USA,” BMC Infectious Diseases, 2016, 16(564): 1–11.

    [85] N. Ayyanar, G. T. Raja, M. Sharma, and D. S. Kumar, “Photonic crystal fiber-based refractive index sensor for early detection of cancer,” IEEE Sensors Journal, 2018, 18(17): 7093–7399.

    [86] K. Ahmed, F. Ahmed, S. Roy, B. K. Paul, M. N. Aktar, D. Vigneswaran, et al., “Refractive index-based blood components sensing in terahertz spectrum,” IEEE Sensors Journal, 2019, 19(9): 3368–3375.

    [87] A. Kumar, P. Verma, and P. Jindal, “Decagonal solid core PCF based refractive index sensor for blood cells detection in terahertz regime,” Optical and Quantum Electronics, 2021, 53(165): 1–13.

    [88] S. Sen, M. Abdullah-Al-Shafi, and M. A. Kabir, “Hexagonal photonic crystal fiber (H-PCF) based optical sensor with high relative sensitivity and low confinement loss for terahertz (THz) regime,” Sensing and Bio-Sensing Research, 2020, 30: 100377.

    [89] M. S. Hossain, M. M. Kamruzzaman, S. Sen, M. M. Azad, and M. S. H. Mollah, “Hexahedron core with sensor based photonic crystal fiber: An approach of design and performance analysis,” Sensing and Bio-Sensing Research, 2021, 32: 100426.

    [90] B. K. Paul, M. Haque, K. Ahmed, and S. Sen, “A novel hexahedron photonic crystal fiber in terahertz propagation: design and analysis,” Photonics, 2019, 6(1): 32.

    [91] N. Suhaimi, I. K. Yakasai, E. Abas, S. Kaijage, and F. Begum, “Modelling and simulation of novel liquid-infiltrated PCF biosensor in Terahertz frequencies,” IET Optoelectronics, 2020, 14: 411–416.

    [92] A. A. M. Bulbul, R. H. Jibon, S. K. Das, T. Roy, A. Saha, and M. B. Hossain, “PCF based formalin detection by exploring the optical properties in THz regime,” Nanoscience & Nanotechnology-Asia, 2021, 11: 314–321.

    [93] V. S. Chaudhary and D. Kumar, “TOPAS based porous core photonic crystal fiber for terahertz chemical sensor,” Optik, 2020, 223: 165562.

    [94] V. Kaur and S. Singh, “Design approach of solid-core photonic crystal fiber sensor with sensing ring for blood component detection,” Journal of Nanophotonics, 2019, 13: 26011.

    [95] M.S. Islam, J. Sultana, A. Dinovitser, K. Ahmed, B. W. H. Ng, and D. Abbott, “Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz regime,” Optics Communications, 2018, 426: 341–347.

    Nazmi A. MOHAMMED, Omar E. KHEDR, El-Sayed M. EL-RABAIE, Ashraf A. M. KHALAF. High-Sensitivity Early Detection Biomedical Sensor for Tuberculosis With Low Losses in the Terahertz Regime Based on Photonic Crystal Fiber Technology[J]. Photonic Sensors, 2023, 13(2): 230202
    Download Citation