• Infrared and Laser Engineering
  • Vol. 48, Issue 10, 1002001 (2019)
Huang Lingling*, Wei Qunshuo, and Wang Yongtian
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201948.1002001 Cite this Article
    Huang Lingling, Wei Qunshuo, Wang Yongtian. Development and applications of wavefront modulation technology based on new functional metasurfaces(Invited)[J]. Infrared and Laser Engineering, 2019, 48(10): 1002001 Copy Citation Text show less
    References

    [1] Hsiao H, Cheng H, Tsai D. Fundamentals and applications of metasurfaces [J]. Small Methods, 2017, 1(4): 1600064.

    [2] Ding F, Pors A, Bozhevolnyi S I. Gradient metasurfaces: a review of fundamentals and applications [J]. Reports On Progress in Physics, 2018, 81(2): 26401.

    [3] Sung J, Lee G, Lee B. Progresses in the practical metasurface for holography and lens [J]. Nanophotonics, 2019, 8(10): 1701-1718.

    [4] Genevet P, Capasso F, Aieta F, et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces [J]. Optica, 2017, 4(1): 139-152.

    [5] Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress [J]. Reports On Progress in Physics, 2015, 78(2): 24401.

    [6] Yang Y, Wang W, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation [J]. Nano Letters, 2014, 14(3): 1394-1399.

    [7] Huang K, Liu H, Restuccia S, et al. Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum [J]. Light-Science & Applications, 2018, 7(3): 17156.

    [8] Chen Y, Yang X, Gao J. Spin-selective second-harmonic vortex beam generation with babinet-inverted plasmonic metasurfaces [J]. Advanced Optical Materials, 2018, 6(19): 1800646.

    [9] Pegard N C, Fleischer J W. Optimizing holographic data storage using a fractional Fourier transform [J]. Optics Letters, 2011, 36(13): 2551-2553.

    [10] Goh X M, Zheng Y, Tan S J, et al. Three-dimensional plasmonic stereoscopic prints in full colour [J]. Nature Communications, 2014, 5: 5361.

    [11] Jin L, Dong Z, Mei S, et al. Noninterleaved metasurface for (2(6)-1) spin- and wavelength-encoded holograms [J]. Nano Letters, 2018, 18(12): 8016-8024.

    [12] Liu H, Yang B, Guo Q, et al. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram [J]. Science Advances, 2017, 3(9): e1701477.

    [13] Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible [J]. Nature Nanotechnology, 2018, 13(3): 220.

    [14] Wang S, Wu P C, Su V, et al. A broadband achromatic metalens in the visible [J]. Nature Nanotechnology, 2018, 13(3): 227-232.

    [15] Nagasaki Y, Suzuki M, Takahara J. All-dielectric Dual-color pixel with subwavelength resolution [J]. Nano Letters, 2017, 17(12): 7500-7506.

    [16] Li Z, Clark A W, Cooper J M. Dual color plasmonic pixels create a polarization controlled nano color palette [J]. Acs Nano, 2016, 10(1): 492-498.

    [17] Duan X, Kamin S, Liu N. Dynamic plasmonic colour display [J]. Nature Communications, 2017, 8: 14606.

    [18] Ji R, Wang S, Liu X, et al. Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities [J]. Nanoscale, 2016, 8(15): 8189-8194.

    [19] Xiao Y, Qian H, Liu Z. Nonlinear metasurface based on giant optical kerr response of gold quantum wells [J]. Acs Photonics, 2018, 5(5): 1654-1659.

    [20] Li G, Wu L, Li K F, et al. Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation [J]. Nano Letters, 2017, 17(12): 7974-7979.

    [21] Minerbi E, Keren-Zur S, Ellenbogen T. Nonlinear metasurface fresnel zone plates for terahertz generation and manipulation [J]. Nano Letters, 2019, 19(9): 6072-6077.

    [22] Wang J, Yang J, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing [J]. Nature Photonics, 2012, 6(7): 488-496.

    [23] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337.

    [24] Pfeiffer C, Emani N K, Shaltout A M, et al. Efficient light bending with isotropic metamaterial huygens′ surfaces [J]. Nano Letters, 2014, 14(5): 2491-2497.

    [25] Wang L, Kruk S, Tang H, et al. Grayscale transparent metasurface holograms [J]. Optica, 2016, 3(12): 1504-1505.

    [26] Zheng G, Muehlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency [J]. Nature Nanotechnology, 2015, 10(4): 308-312.

    [27] Sung J, Lee G, Choi C, et al. Single-layer bifacial metasurface: full-space visible light control [J]. Advanced Optical Materials, 2019, 7(8): 1801748.

    [28] Deng Z, Deng J, Zhuang X, et al. Diatomic metasurface for vectorial holography [J]. Nano Letters, 2018, 18(5): 2885-2892.

    [29] Huang L, Chen X, Muehlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface [J]. Nature Communications, 2013, 4: 2808.

    [30] Chen Y, Yang X, Gao J. Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces [J]. Light-Science & Applications, 2018, 7(1): 1-10.

    [31] Franklin D, Modak S, Vazquez-Guardado A, et al. Covert infrared image encoding through imprinted plasmonic cavities [J]. Light-Science & Applications, 2018, 7(1): 93.

    [32] Kamali S M, Arbabi E, Arbabi A, et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles [J]. Physical Review X, 2017, 7(4): 41056.

    [33] Pors A, Bozhevolnyi S I. Plasmonic metasurfaces for efficient phase control in reflection [J]. Optics Express, 2013, 21(22): 27438-27451.

    [34] Montelongo Y, Tenorio-Pearl J O, Williams C, et al. Plasmonic nanoparticle scattering for color holograms [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12679-12683.

    [35] Huang L, Muhlenbernd H, Li X, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces [J]. Advanced Materials, 2015, 27(41): 6444.

    [36] Wei Q, Huang L, Li X, et al. Broadband multiplane holography based on plasmonic metasurface [J]. Advanced Optical Materials, 2017, 5(18): 1700434.

    [37] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization [J]. Physical Review Letters, 2017, 118(11): 113901.

    [38] Zhao R, Sain B, Wei Q, et al. Multichannel vectorial holographic display and encryption [J]. Light-Science & Applications, 2018, 7(1): 95.

    [39] Wang B, Dong F, Li Q, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms [J]. Nano Letters, 2016, 16(8): 5235-5240.

    [40] Wan W, Gao J, Yang X. Full-Color Plasmonic metasurface holograms [J]. Acs Nano, 2016, 10(12): 10671-10680.

    [41] Li X, Chen L, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation [J]. Science Advances, 2016, 2(11): e1601102.

    [42] Lim K T P, Liu H, Liu Y, et al. Holographic colour prints for enhanced optical security by combined phase and amplitude control [J]. Nature Communications, 2019, 10(1): 25.

    [43] Zhang Y, Shi L, Hu D, et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing [J]. Nanoscale Horizons, 2019, 4(3): 601-609.

    [44] Hu Y, Luo X, Chen Y, et al. 3D-Integrated metasurfaces for full-colour holography [J]. Light-Science & Applications, 2019, 8(1): 1-9.

    [45] Ji R, Wang S, Liu X, et al. Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities [J]. Nanoscale, 2016, 8(15): 8189-8194.

    [46] Pfeiffer C, Zhang C, Ray V, et al. High performance bianisotropic metasurfaces: asymmetric transmission of light [J]. Physical Review Letters, 2014, 113(2): 23902.

    [47] Zhao Y, Belkin M A, Alu A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers [J]. Nature Communications, 2012, 3: 870.

    [48] Frese D, Wei Q, Wang Y, et al. Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces [J]. Nano Letters, 2019, 19(6): 3976-3980.

    [49] Cheng J, Jafar-Zanjani S, Mosallaei H. All-dielectric ultrathin conformal metasurfaces: lensing and cloaking applications at 532 nm wavelength [J]. Scientific Reports, 2016, 6: 38440.

    [50] Kamali S M, Arbabi A, Arbabi E, et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces [J]. Nature Communications, 2016, 7: 11618.

    [51] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging [J]. Science, 2016, 352(6290): 1190-1194.

    [52] Han N, Huang L, Wang Y. Illusion and cloaking using dielectric conformal metasurfaces [J]. Optics Express, 2018, 26(24): 31625-31635.

    [53] Mehmood M Q, Mei S, Hussain S, et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices [J]. Advanced Materials, 2016, 28(13): 2533.

    [54] Huang L, Song X, Reineke B, et al. Volumetric generation of optical vortices with metasurfaces [J]. Acs Photonics, 2017, 4(2): 338-346.

    [55] Padgett M, Bowman R. Tweezers with a twist [J]. Nature Photonics, 2011, 5(6): 343-348.

    [56] Tan H, Deng J, Zhao R, et al. A Free-Space Orbital angular momentum multiplexing communication system based on a metasurface [J]. Laser & Photonics Reviews, 2019, 13(6): 1800278.

    [57] Lin Z, Li X, Zhao R, et al. High-efficiency bessel beam array generation by Huygens metasurfaces [J]. Nanophotonics, 2019, 8(6): 1079-1085.

    [58] Liu L, Zhang X, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude [J]. Advanced Materials, 2014, 26(29): 5031-5036.

    [59] Jia S L, Wan X, Fu X J, et al. Low-reflection beam refractions by ultrathin Huygens metasurface [J]. Aip Advances, 2015, 5(6): 67102.

    [60] Lee G, Yoon G, Lee S, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces [J]. Nanoscale, 2018, 10(9): 4237-4245.

    [61] Song X, Huang L, Tang C, et al. Selective diffraction with complex amplitude modulation by dielectric metasurfaces[J]. Advanced Optical Materials, 2018, 6(4): 1701181.

    [62] Song X, Huang L, Sun L, et al. Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface[J]. Applied Physics Letters, 2018, 112(7): 73104.

    [63] Zhang T, Huang L, Li X, et al. High-efficiency broadband polarization converter based on Omega-shaped metasurface[J]. Journal of Physics D-Applied Physics, 2017, 50(45): 454001.

    [64] Zhao R, Huang L, Tang C, et al. Nanoscale polarization manipulation and encryption based on dielectric metasurfaces[J]. Advanced Optical Materials, 2018, 6(19): 1800490.

    [65] Malek S C, Ee H, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Letters, 2017, 17(6): 3641-3645.

    [66] Ji R, Hua Y, Chen K, et al. A switchable metalens based on active tri-layer metasurface[J]. Plasmonics, 2019, 14(1): 165-171.

    [67] Zhu W, Yang R, Fan Y, et al. Controlling optical polarization conversion with Ge2Sb2Te5-based phase-change dielectric metamaterials [J]. Nanoscale, 2018, 10(25): 12054-12061.

    [68] Cheng Z, Rios C, Pernice W H P, et al. On-chip photonic synapse[J]. Science Advances, 2017, 3(9): e1700160.

    [69] Wang Q, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1): 60-75.

    [70] Hwang C, Kim G H, Yang J, et al. Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials [J]. Nanoscale, 2018, 10(46): 21648-22655.

    [71] Li T, Huang L, Liu J, et al. Tunable wave plate based on active plasmonic metasurfaces [J]. Optics Express, 2017, 25(4): 4216-4226.

    [72] Lin Z, Huang L, Zhao R, et al. Dynamic control of mode modulation and spatial multiplexing using hybrid metasurfaces [J]. Optics Express, 2019, 27(13): 18740-18750.

    [73] Li J, Kamin S, Zheng G, et al. Addressable metasurfaces for dynamic holography and optical information encryption [J]. Science Advances, 2018, 4(6): eaar6768.

    [74] Li T, Wei Q, Reineke B, et al. Reconfigurable metasurface hologram by utilizing addressable dynamic pixels [J]. Optics Express, 2019, 27(15): 21153-21162.

    [75] Ye W, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography [J]. Nature Communications, 2016, 7: 11930.

    [76] Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography [J]. Nature Communications, 2016, 7: 12533.

    [77] Lin Z, Huang L, Xu Z T, et al. Four-wave mixing holographic multiplexing based on nonlinear metasurfaces[J]. Advanced Optical Materials, 2019: 1900782.

    [78] Reineke B, Sain B, Zhao R, et al. Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography[J]. Nano Letters, 2019, 19(9): 6585-6591.

    CLP Journals

    [1] Juguang Guo, Yonghui Ma, Guang Zhang, Zhihui Yang. Active image quality reconstruction technology based on flexible display[J]. Infrared and Laser Engineering, 2021, 50(10): 20200458

    [2] Qingyuan Yang, Wei Wang, Xiang Tian. High numerical aperture bifocal metalens with regulatory focusing intensity[J]. Infrared and Laser Engineering, 2022, 51(5): 20210602

    Huang Lingling, Wei Qunshuo, Wang Yongtian. Development and applications of wavefront modulation technology based on new functional metasurfaces(Invited)[J]. Infrared and Laser Engineering, 2019, 48(10): 1002001
    Download Citation