• Chinese Journal of Lasers
  • Vol. 51, Issue 16, 1602208 (2024)
Yalei Zhang, Yunping Lan*, Jiayuan Han, Hongrong Zhang, and Yonggang Zou
Author Affiliations
  • State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, Changchun 130013, Jilin , China
  • show less
    DOI: 10.3788/CJL231276 Cite this Article Set citation alerts
    Yalei Zhang, Yunping Lan, Jiayuan Han, Hongrong Zhang, Yonggang Zou. Influence of Wet Etching Passivation on Surface Properties of Gallium Arsenide[J]. Chinese Journal of Lasers, 2024, 51(16): 1602208 Copy Citation Text show less
    References

    [1] Afonenko A, Ushakov D, Alymov G et al. Feasibility of lasing in the GaAs reststrahlen band with HgTe multiple quantum well laser diodes[J]. Journal of Physics D Applied Physics, 54, 175108(2021).

    [2] Michaud J, Béchou L, Veyrié D et al. Thermal behavior of high power GaAs-based laser diodes in vacuum environment[J]. IEEE Photonics Technology Letters, 28, 665-668(2016).

    [3] Rashidi M, Haggren T, Su Z C et al. Managing resonant and nonresonant lasing modes in GaAs nanowire random lasers[J]. Nano Letters, 21, 3901-3907(2021).

    [4] Slivken S, Razeghi M. High power mid-infrared quantum cascade lasers grown on GaAs[J]. Photonics, 9, 231(2022).

    [5] Buencuerpo J, Llorens J M, Ripalda J M et al. Engineering the reciprocal space for ultrathin GaAs solar cells[J]. Optics & Laser Technology, 142, 107224(2021).

    [6] Ouyang H C, Shang L, Xu C M et al. Conversion characteristics and damage of GaAs solar cells irradiated by 532 nm continuous laser[J]. Laser & Optoelectronics Progress, 59, 1716004(2022).

    [7] Zhang Y, Long J H, Sun Q J et al. Analysis of inverted GaInP/GaAs/InGaAs triple-junction solar cell failure[J]. Acta Optica Sinica, 42, 2016001(2022).

    [8] Liu Y, Zhang B, Feng Y N et al. Development of 340-GHz transceiver front end based on GaAs monolithic integration technology for THz active imaging array[J]. Applied Sciences, 10, 7924(2020).

    [9] Choi H. Pre-matching circuit for high-frequency ultrasound transducers[J]. Sensors, 22, 8861(2022).

    [10] Li X, Yu X Z, Zeng H T et al. Optimizing GaAs nanowire-based visible-light photodetectors[J]. Applied Physics Letters, 119, 053105(2021).

    [11] Ma Z Z, Tang P, Xue J C et al. Enhancing photoresponse of GaAs-based photodetector by plasmon grating structures[J]. Plasmonics, 18, 1571-1579(2023).

    [12] Li J C, Wang J, Xiao C Y et al. Investigation of surface improvement of GaAs/Si(001) with strain balanced superlattice[J]. Chinese Journal of Lasers, 50, 0603002(2023).

    [13] Adlkofer K, Tanaka M, Hillebrandt H et al. Electrochemical passivation of gallium arsenide surface with organic self-assembled monolayers in aqueous electrolytes[J]. Applied Physics Letters, 76, 3313-3315(2000).

    [14] Park J, Cho E, Park K et al. Electrochemical control of surface passivation and deformation in InP nanotetrapods[J]. Applied Surface Science, 641, 158524(2023).

    [15] Lebedev M V, Lvova T V, Smirnov A N et al. Abnormal electronic structure of chemically modified n-InP(100) surfaces[J]. Journal of Materials Chemistry C, 10, 2163-2172(2022).

    [16] Arudra P, Marshall G M, Liu N et al. Enhanced photonic stability of GaAs in aqueous electrolyte using alkanethiol self-assembled monolayers and postprocessing with ammonium sulfide[J]. The Journal of Physical Chemistry C, 116, 2891-2895(2012).

    [17] Ghods A, Saravade V G, Zhou C L et al. Field-effect passivation of metal/n-GaAs Schottky junction solar cells using atomic layer deposited Al2O3/ZnO ultrathin films[J]. Journal of Vacuum Science Technology A: Vacuum Surfaces and Films, 38, 012406(2020).

    [18] Mattila P, Bosund M, Jussila H et al. Properties of atomic-layer-deposited ultra-thin AlN films on GaAs surfaces[J]. Applied Surface Science, 314, 570-574(2014).

    [19] Song Y Y, Song D, Li Y et al. Influence of passivation layer and P-type base structure optimization on charge collection efficiency of electron bombardment active pixel sensor[J]. Chinese Journal of Lasers, 50, 1803001(2023).

    [20] Jacob B, Camarneiro F, Borme J et al. Surface passivation of III-V GaAs nanopillars by low-frequency plasma deposition of silicon nitride for active nanophotonic devices[J]. ACS Applied Electronic Materials, 4, 3399-3410(2022).

    [21] McGuiness C L, Diehl G A, Blasini D et al. Molecular self-assembly at bare semiconductor surfaces: cooperative substrate-molecule effects in octadecanethiolate monolayer assemblies on GaAs(111), (110), and (100)[J]. ACS Nano, 4, 3447-3465(2010).

    [22] Huang X H, Dubowski J J. Solvent-mediated self-assembly of hexadecanethiol on GaAs (001)[J]. Applied Surface Science, 299, 66-72(2014).

    [23] Xia N, Fang X, Rong T Y et al. Effect of surface sulfur passivation on photoresponse characteristics of GaAs materials[J]. Chinese Journal of Lasers, 45, 0603002(2018).

    [24] van Dorp D H, Arnauts S, Cuypers D et al. Nanoscale etching of In0.53Ga0.47As in H2O2/HCl solutions for advanced CMOS processing[J]. ECS Journal of Solid State Science and Technology, 3, P179-P184(2014).

    [25] Abrenica G H A, Fingerle M, Lebedev M V et al. Wet chemical processing of Ge in acidic H2O2 solution: nanoscale etching and surface chemistry[J]. ECS Journal of Solid State Science and Technology, 9, 084002(2020).

    [26] van Dorp D H, Vanheusden G, Paulussen K et al. Photoanodic oxidation of InP in acid solution and its surface chemistry: on the interplay of photons, protons and hydrodynamics[J]. Electrochimica Acta, 360, 136872(2020).

    [27] Abrenica G H A, Lebedev M V, Fingerle M et al. A synchrotron radiation photoelectron spectroscopy study on atomic-scale wet etching of InAs (111)-A and (111)-B in acidic peroxide solutions: surface chemistry versus kinetics[J]. Materials Today Chemistry, 23, 100728(2022).

    [28] Mahmoodnia H, Salehi A, Mastelaro V R. GaAs semiconductor passivated by (NH4)2Sx: analysis of different passivation methods using electrical characteristics and XPS measurements[J]. Semiconductors, 54, 817-826(2020).

    [29] Cuypers D, Fleischmann C, van Dorp D H et al. Sacrificial self-assembled monolayers for the passivation of GaAs (100) surfaces and interfaces[J]. Chemistry of Materials, 28, 5689-5701(2016).

    [30] van Dorp D H, Arnauts S, Laitinen M et al. Nanoscale etching of III-V semiconductors in acidic hydrogen peroxide solution: GaAs and InP, a striking contrast in surface chemistry[J]. Applied Surface Science, 465, 596-606(2019).

    [31] Huang Y, Luo J L, Ivey D G. Comparative study of GaAs corrosion in H2SO4 and NH3·H2O solutions by electrochemical methods and surface analysis[J]. Materials Chemistry and Physics, 93, 429-442(2005).

    [32] Ding X M, Moumanis K, Dubowski J J et al. Fourier-transform infrared and photoluminescence spectroscopies of self-assembled monolayers of long-chain thiols on (001) GaAs[J]. Journal of Applied Physics, 99, 054701(2006).

    [33] Tsang W T, Wang S. Profile and groove-depth control in GaAs diffraction gratings fabricated by preferential chemical etching in H2SO4-H2O2-H2O system[J]. Applied Physics Letters, 28, 44-46(1976).

    [34] Espinosa-Vega L I, Eugenio-Lopez E, Gutierrez-Hernandez J M et al. Strain and anisotropy effects studied in InAs/GaAs(221) quantum dashes by Raman spectroscopy[J]. Journal of Crystal Growth, 477, 212-216(2017).

    [35] Zhou L, Chu X F, Chi Y D et al. Property improvement of GaAs surface by 1-octadecanethiol passivation[J]. Crystals, 9, 130(2019).

    Yalei Zhang, Yunping Lan, Jiayuan Han, Hongrong Zhang, Yonggang Zou. Influence of Wet Etching Passivation on Surface Properties of Gallium Arsenide[J]. Chinese Journal of Lasers, 2024, 51(16): 1602208
    Download Citation