• Journal of Semiconductors
  • Vol. 44, Issue 9, 091603 (2023)
Xiangwei Qu1,2 and Xiaowei Sun1,2,*
Author Affiliations
  • 1Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • 2Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, and Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, Southern University of Science and Technology, Shenzhen 518055, China
  • show less
    DOI: 10.1088/1674-4926/44/9/091603 Cite this Article
    Xiangwei Qu, Xiaowei Sun. Impedance spectroscopy for quantum dot light-emitting diodes[J]. Journal of Semiconductors, 2023, 44(9): 091603 Copy Citation Text show less
    References

    [1] V L Colvin, M C Schlamp, A P Alivisatos. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 370, 354(1994).

    [2] X L Dai, Z X Zhang, Y Z Jin et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 515, 96(2014).

    [3] H B Shen, Q Gao, Y B Zhang et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat Photonics, 13, 192(2019).

    [4] Y Z Deng, F Peng, Y Lu et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat Photonics, 16, 505(2022).

    [5] J J Song, O Y Wang, H B Shen et al. Quantum dot LEDs: Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer. Adv Funct Mater, 29, 1970226(2019).

    [6] T Kim, K H Kim, S Kim et al. Efficient and stable blue quantum dot light-emitting diode. Nature, 586, 385(2020).

    [7] L Qian, Y Zheng, J G Xue et al. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat Photonics, 5, 543(2011).

    [8] Y Shirasaki, G J Supran, M G Bawendi et al. Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics, 7, 13(2013).

    [9] Z X Zhang, Y X Ye, C D Pu et al. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots. Adv Mater, 30, e1801387(2018).

    [10] B S Mashford, M Stevenson, Z Popovic et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat Photonics, 7, 407(2013).

    [11] W R Cao, C Y Xiang, Y X Yang et al. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat Commun, 9, 2608(2018).

    [12] C Y Xiang, L J Wu, Z Z Lu et al. High efficiency and stability of ink-jet printed quantum dot light emitting diodes. Nat Commun, 11, 1646(2020).

    [13] C D Pu, X L Dai, Y F Shu et al. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat Commun, 11, 937(2020).

    [14] J Y Zhao, L X Chen, D Z Li et al. Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition. Nat Commun, 12, 4603(2021).

    [15] S Q Jia, H D Tang, J R Ma et al. High performance inkjet-printed quantum-dot light-emitting diodes with high operational stability. Adv Opt Mater, 9, 2101069(2021).

    [16] D Q Liu, S Cao, S Y Wang et al. Highly stable red quantum dot light-emitting diodes with long T95 operation lifetimes. J Phys Chem Lett, 11, 3111(2020).

    [17] X T Chen, X F Lin, L K Zhou et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling. Nat Commun, 14, 284(2023).

    [18] P L Yu, Q L Yuan, J L Zhao et al. Electronic and excitonic processes in quantum dot light-emitting diodes. J Phys Chem Lett, 13, 2878(2022).

    [19] S K Kim, Y S Kim. Charge carrier injection and transport in QLED layer with dynamic equilibrium of trapping/de-trapping carriers. J Appl Phys, 126, 035704(2019).

    [20] Z H Wu, P Liu, X W Qu et al. Identifying the surface charges and their impact on carrier dynamics in quantum-dot light-emitting diodes by impedance spectroscopy. Adv Opt Mater, 9, 2100389(2021).

    [21] S Chen, W R Cao, T L Liu et al. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat Commun, 10, 765(2019).

    [22] X W Qu, J R Ma, P Liu et al. On the voltage behavior of quantum dot light-emitting diode. Nano Res, 16, 5511(2023).

    [23] T Doe, K Kitano, S Yamamoto et al. Evaluation of degradation behavior in quantum dot light-emitting diode with different hole transport materials via transient electroluminescence. Appl Phys Lett, 118, 203503(2021).

    [24] Q Su, Y Z Sun, H Zhang et al. Quantum dots: Origin of positive aging in quantum-dot light-emitting diodes. Adv Sci, 5, 1870058(2018).

    [25] K P Acharya, A Titov, J Hyvonen et al. High efficiency quantum dot light emitting diodes from positive aging. Nanoscale, 9, 14451(2017).

    [26] Z N Chen, Q Su, Z Y Qin et al. Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes. Nano Res, 14, 320(2021).

    [27] S Ding, Z Wu, X Qu et al. Impact of the resistive switching effects in ZnMgO electron transport layer on the aging characteristics of quantum dot light-emitting diodes. Appl Phys Lett, 117, 093501(2020).

    [28] D S Chen, D Chen, X L Dai et al. Shelf-stable quantum-dot light-emitting diodes with high operational performance. Adv Mater, 32, 2006178(2020).

    [29] E Von Hauff. Impedance spectroscopy for emerging photovoltaics. J Phys Chem C, 123, 11329(2019).

    [30] S Nowy, W Ren, A Elschner et al. Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes. J Appl Phys, 107, 054501(2010).

    [31] L S C Pingree, B J Scott, M T Russell et al. Negative capacitance in organic light-emitting diodes. Appl Phys Lett, 86, 073509(2005).

    [32] L Zhang, H Nakanotani, C Adachi. Capacitance-voltage characteristics of a 4, 4’-bis [(N-carbazole)styryl]biphenyl based organic light-emitting diode: Implications for characteristic times and their distribution. Appl Phys Lett, 103, 093301(2013).

    [33] Mora-Seró Iván, Garcia-Belmonte Germà, P Boix Pablo et al. Impedance spectroscopy characterisation of highly efficient silicon solar cells under different light illumination intensities. Energy Environ Sci, 2, 678(2009).

    [34] A Guerrero, J Bisquert, G Garcia-Belmonte. Impedance spectroscopy of metal halide perovskite solar cells from the perspective of equivalent circuits. Chem Rev, 121, 14430(2021).

    [35] E Von Hauff, D Klotz. Impedance spectroscopy for perovskite solar cells: Characterisation, analysis, and diagnosis. J Mater Chem C, 10, 742(2022).

    [36] M S Suresh. Measurement of solar cell parameters using impedance spectroscopy. Sol Energy Mater Sol Cells, 43, 21(1996).

    [37] S S Hegedus, E A Fagen. Midgap states in a-Si: H and a-SiGe: H p-i-n solar cells and Schottky junctions by capacitance techniques. J Appl Phys, 71, 5941(1992).

    [38] P L Taberna, P Simon, J F Fauvarque. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc, 150, A292(2003).

    [39] R Srinivasan, F Fasmin. An Introduction to Electrochemical Impedance Spectroscopy. CRC Press(2021).

    [40] H Bao, C L Chen, Y Q Cao et al. Quantitative determination of charge accumulation and recombination in operational quantum dots light emitting diodes via time-resolved electroluminescence spectroscopy. J Phys Chem Lett, 14, 1777(2023).

    [41] X W Qu, J R Ma, C W Shan et al. Trap state-assisted electron injection in blue quantum dot light-emitting diode. Appl Phys Lett, 121, 113507(2022).

    [42] Y Park, B Klöckner, D Hahm et al. Origin of enhanced efficiency and stability in diblock copolymer-grafted Cd-free quantum dot-based light-emitting diodes. J Mater Chem C, 9, 10398(2021).

    [43] P L Yu, X X Zhu, J L Bai et al. Calibrating the hole mobility measurements implemented by transient electroluminescence technology. ACS Appl Mater Interfaces, 14, 52253(2022).

    [44] H Xiao, K Wang, R Wang et al. Equivalent circuit of quantum-dot LED and acquisition of carrier lifetime in active layer. IEEE Electron Device Lett, 41, 87(2020).

    [45] D S Chung, T Davidson-Hall, G Cotella et al. Significant lifetime enhancement in QLEDs by reducing interfacial charge accumulation via fluorine incorporation in the ZnO electron transport layer. Nano-Micro Lett, 14, 212(2022).

    [46] Y Q Q Yi, D W Qi, H H Wei et al. Molecular design of diazo compound for carbene-mediated cross-linking of hole-transport polymer in QLED with reduced energy barrier and improved charge balance. ACS Appl Mater Interfaces, 14, 39149(2022).

    [47] Y F Fang, P L Bai, J Y Li et al. Highly efficient red quantum dot light-emitting diodes by balancing charge injection and transport. ACS Appl Mater Interfaces, 14, 21263(2022).

    [48] M R Zhang, F Guo, S Y Lei et al. Positive temperature dependence of the electroluminescent performance in a colloidal quantum dot light-emitting diode. Dyes Pigments, 195, 109703(2021).

    [49] J L Li, Z Liang, Q C Su et al. Small molecule-modified hole transport layer targeting low turn-on-voltage, bright, and efficient full-color quantum dot light emitting diodes. ACS Appl Mater Interfaces, 10, 3865(2018).

    [50] S S Liang, S J Wang, Z Wu et al. Interfacial charge modulation: An efficient strategy for stable blue quantum-dot light-emitting diodes. Adv Opt Mater, 11, 2201802(2023).

    [51] W C Zhao, L M Xie, Y Q Q Yi et al. Optimizing the central steric hindrance of cross-linkable hole transport materials for achieving highly efficient RGB QLEDs. Mater Chem Front, 4, 3368(2020).

    [52] X Y Zhang, D W Li, Z H Zhang et al. Constructing effective hole transport channels in cross-linked hole transport layer by stacking discotic molecules for high performance deep blue QLEDs. Adv Sci, 9, 2200450(2022).

    [53] D Kim, O Kwon, M Kim et al. Charge carrier analysis via impedance spectroscopy and the achievement of high performance in CdSe/ZnS: Di-[4-(N, N-di-p-tolyl-amino)-phenyl]cyclohexane hybrid quantum dot light-emitting diodes. Org Electron, 108, 106593(2022).

    [54] P Y Tang, L M Xie, X Y Xiong et al. Realizing 22.3% EQE and 7-fold lifetime enhancement in QLEDs via blending polymer TFB and cross-linkable small molecules for a solvent-resistant hole transport layer. ACS Appl Mater Interfaces, 12, 13087(2020).

    [55] C You, A Titov, B H Kim et al. Impedance measurements on QLED devices: Analysis of high-frequency loop in terms of material properties. J Solid State Electrochem, 24, 3083(2020).

    [56] L L Xu, G Y Liu, H Y Xiang et al. Charge-carrier dynamics and regulation strategies in perovskite light-emitting diodes: From materials to devices. Appl Phys Rev, 9, 021308(2022).

    [57] M R Zhang, F Guo, Q Z Zhou et al. Enhanced performance through trap states passivation in quantum dot light emitting diode. J Lumin, 234, 117946(2021).

    [58] X X Zhu, Y C Wang, W Y Ji. Unraveling the turn-on limitation of quantum-dot electroluminescence via a stepwise-increasing voltage measurement. Phys Rev Applied, 19, 024010(2023).

    [59] R J Wang, T Wang, Z H Kang et al. Efficient flexible quantum-dot light-emitting diodes with unipolar charge injection. Opt Express, 30, 15747(2022).

    [60] C Blauth, P Mulvaney, T Hirai. Negative capacitance as a diagnostic tool for recombination in purple quantum dot LEDs. J Appl Phys, 125, 195501(2019).

    [61] M Ershov, H C Liu, L Li et al. Negative capacitance effect in semiconductor devices. IEEE Trans Electron Devices, 45, 2196(1998).

    [62] T Walter, R Herberholz, C Müller et al. Determination of defect distributions from admittance measurements and application to Cu(In, Ga)Se2 based heterojunctions. J Appl Phys, 80, 4411(1996).

    [63] R Herberholz, M Igalson, H W Schock. Distinction between bulk and interface states in CuInSe2/CdS/ZnO by space charge spectroscopy. J Appl Phys, 83, 318(1998).

    [64] L Xu, J Wang, J W Hsu. Transport effects on capacitance-frequency analysis for defect characterization in organic photovoltaic devices. Phys Rev Applied, 6, 064020(2016).

    [65] H Lee, B G Jeong, W K Bae et al. Surface state-induced barrierless carrier injection in quantum dot electroluminescent devices. Nat Commun, 12, 5669(2021).

    [66] Y C Wang, Z J Chen, T Wang et al. Efficient structure for InP/ZnS-based electroluminescence device by embedding the emitters in the electron-dominating interface. J Phys Chem Lett, 11, 1835(2020).

    [67] Z G Lu, X Y Zhang, W J Wang et al. Highly stable quantum dot light-emitting diodes with improved interface contacting via violet irradiation. Appl Surf Sci, 615, 156339(2023).

    [68] C Y Lee, N Naik Mude, R Lampande et al. Efficient cadmium-free inverted red quantum dot light-emitting diodes. ACS Appl Mater Interfaces, 11, 36917(2019).

    [69] X W Qu, J R Ma, S Q Jia et al. Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer. Chin Phys B, 30, 118503(2021).

    [70] W X Du, C Y Cheng, J J Tian. Efficient solution-processed InP quantum-dots light-emitting diodes enabled by suppressing hole injection loss. Nano Res, 16, 7511(2023).

    [71] D Kim, S Lee, J Kim et al. Understanding the electroluminescence mechanism of CdSe/ZnS quantum-dot light-emitting diodes with a focus on charge carrier behavior in quantum-dot emissive layers. IEEE Electron Device Lett, 44, 959(2023).

    [72] X W Qu, N Zhang, R Cai et al. Improving blue quantum dot light-emitting diodes by a lithium fluoride interfacial layer. Appl Phys Lett, 114, 071101(2019).

    [73] Y Guo, B C Liu, Z Chen et al. Water-passivated ZnMgO nanoparticles for blue quantum dot light-emitting diodes. J Mater Chem C, 9, 10381(2021).

    [74] M J Ning, S Cao, Q Y Li et al. Improving performance of InP-based quantum dot light-emitting diodes by controlling defect states of the ZnO electron transport layer. J Phys Chem C, 127, 824(2023).

    [75] Y Z Sun, W Chen, Y H Wu et al. A low-temperature-annealed and UV-ozone-enhanced combustion derived nickel oxide hole injection layer for flexible quantum dot light-emitting diodes. Nanoscale, 11, 1021(2019).

    [76] W D Zhang, Y Z Tan, X J Duan et al. High quantum yield blue InP/ZnS/ZnS quantum dots based on bromine passivation for efficient blue light-emitting diodes. Adv Opt Mater, 10, 2200685(2022).

    [77] H W Feng, Y C Yu, G Tang et al. Carrier transport regulation with hole transport trilayer for efficiency enhancement in quantum dot light-emitting devices. J Lumin, 231, 117785(2021).

    [78] H M Zhang, Q L Yuan, T Wang et al. Unraveling the effect of shell thickness on charge injection in blue quantum-dot light-emitting diodes. Appl Phys Lett, 119, 243504(2021).

    [79] Q B Shen, Y L Hao, L Y Ma et al. Comparative study of red/green/blue quantum-dot light-emitting diodes by time-resolved transient electroluminescence. J Phys Chem Lett, 12, 7019(2021).

    [80] H Zhang, S M Chen. An ZnMgO: PVP inorganic–organic hybrid electron transport layer: Towards efficient bottom-emission and transparent quantum dot light-emitting diodes. J Mater Chem C, 7, 2291(2019).

    [81] T Q Zhang, P Liu, F Q Zhao et al. Electric dipole modulation for boosting carrier recombination in green InP QLEDs under strong electron injection. Nanoscale Adv, 5, 385(2023).

    [82] B Y Zhu, W Y Ji, Z Q Duan et al. Low turn-on voltage and highly bright Ag-In-Zn-S quantum dot light-emitting diodes. J Mater Chem C, 6, 4683(2018).

    [83] Q Su, H Zhang, S M Chen. Identification of excess charge carriers in InP-based quantum-dot light-emitting diodes. Appl Phys Lett, 117, 053502(2020).

    [84] Y Z Li, P H He, S T Chen et al. Inkjet-printed oxide thin-film transistors based on nanopore-free aqueous-processed dielectric for active-matrix quantum-dot light-emitting diode displays. ACS Appl Mater Interfaces, 11, 28052(2019).

    [85] B H Kang, J S Lee, S W Lee et al. Efficient exciton generation in atomic passivated CdSe/ZnS quantum dots light-emitting devices. Sci Rep, 6, 1(2016).

    [86] J R Ma, H D Tang, X W Qu et al. A dC/dV measurement for quantum-dot light-emitting diodes. Chin Phys Lett, 39, 128401(2022).

    [87] X T Xiao, T K Ye, J Y Sun et al. Capacitance–voltage characteristics of perovskite light-emitting diodes: Modeling and implementing on the analysis of carrier behaviors. Appl Phys Lett, 120, 243501(2022).

    [88] K Lee, J Yun, S Lee et al. Understanding of the aging pattern in quantum dot light-emitting diodes using low-frequency noise. Nanoscale, 12, 15888(2020).

    [89] W Y Ji, S H Liu, H Zhang et al. Ultrasonic spray processed, highly efficient all-inorganic quantum-dot light-emitting diodes. ACS Photonics, 4, 1271(2017).

    [90] J Mock, M Kallergi, E Groß et al. Revealing the negative capacitance effect in silicon quantum dot light-emitting diodes via temperature-dependent capacitance-voltage characterization. IEEE Photonics J, 14, 1(2022).

    [91] B Ray, A G Baradwaj, B W Boudouris et al. Defect characterization in organic semiconductors by forward bias capacitance–voltage (FB-CV) analysis. J Phys Chem C, 118, 17461(2014).

    [92] T Kirchartz, W Gong, S A Hawks et al. Sensitivity of the Mott–Schottky analysis in organic solar cells. J Phys Chem C, 116, 7672(2012).

    [93] O Almora, C Aranda, E Mas-Marzá et al. On Mott-Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells. Appl Phys Lett, 109, 173903(2016).

    [94] M Mingebach, C Deibel, V Dyakonov. Built-in potential and validity of the Mott-Schottky analysis in organic bulk heterojunction solar cells. Phys Rev B, 84, 153201(2011).

    [95] I Zonno, A Martinez-Otero, J C Hebig et al. Understanding Mott-Schottky measurements under illumination in organic bulk heterojunction solar cells. Phys Rev Applied, 7, 034018(2017).

    [96] X W Qu, G H Xiang, J R Ma et al. Identifying the dominant carrier of CdSe-based blue quantum dot light-emitting diode. Appl Phys Lett, 122, 113501(2023).

    Xiangwei Qu, Xiaowei Sun. Impedance spectroscopy for quantum dot light-emitting diodes[J]. Journal of Semiconductors, 2023, 44(9): 091603
    Download Citation