• Photonic Sensors
  • Vol. 9, Issue 4, 317 (2019)
Huajun CHEN*
Author Affiliations
  • School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan 232001, China
  • show less
    DOI: 10.1007/s13320-019-0535-z Cite this Article
    Huajun CHEN. Manipulation of Coherent Optical Propagation Based on Monolayer MoS2 Resonator[J]. Photonic Sensors, 2019, 9(4): 317 Copy Citation Text show less
    References

    [1] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres persecond in an ultracold atomic gas,” Nature, 1999, 397(6720): 594-598.

    [2] K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Physical Review Letters, 1991, 66(20): 2593-2596.

    [3] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Review of Modem Physics, 2005, 77(2): 633-673.

    [4] M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Review of Modem Physics, 2003, 75(2): 457-472.

    [5] L. J. Wang, A. Kuzmich, and A. Dogariu, “gain-assisted superluminal light propagation,” Nature, 2000, 406(6793): 277-279.

    [6] M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science, 2003, 301(5630): 200-202.

    [7] P. C. Ku, F. Sedgwick, C. J. C. Hasnain, P. Palinginis, T. Li, H. Wang, et al., “Slow light in semiconductor quantum wells,” Optics Letters, 2004, 29(19): 2291-2293.

    [8] Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science, 2007, 318(5857): 1748-1750.

    [9] S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Physical Review Letters, 2008, 100(20): 203603-1-203603-2.

    [10] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Review of Modem Physics, 2014, 86(4): 1391-1455.

    [11] A. Abramovici, W. E. Althouse, R. W. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, et al., “LIGO: the laser interferometer gravitational-wave observatory,” Science, 1992, 256(5055): 325-333.

    [12] A. Naik, O. Buu, M. D. LaHaye, A. D. Armour, A. A. Clerk, M. P. Blencowe, et al., “Cooling a nanomechanical resonator with quantum back-action,” Nature, 2006, 443(7108): 193-196.

    [13] J. J. Li and K. D. Zhu, “All-optical mass sensing with coupled mechanical resonator systems,” Physics Reports, 2013, 525(3): 223-254.

    [14] B. Chen, C. Jiang, and K. D. Zhu, “Slow light in a cavity optomechanical system with a Bose-Einstein condensate,” Physics Review A, 2011, 83(5): 055803-1-055803-4.

    [15] A. H. S. Naeini, T. P. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, et al., “Electromagnetically induced transparency and slow light with optomechanics,” Nature, 2011, 472(7341): 69-73.

    [16] R. Ganatra and Q. Zhang, “Few-layer MoS2: a promising layered semiconductor,” ACS Nano, 2014, 8(5): 4074-4099.

    [17] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Physical Review Letters, 2010, 105(13): 136805-1-136805-4.

    [18] K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2,” Nano Letters, 2013, 13(6): 2931-2936.

    [19] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Letters, 2011, 11(12): 5111-5116.

    [20] H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, et al., “MoS2 nanosheet phototransistors with thickness-modulated optical energy gap,” Nano Letters, 2012, 12(7): 3695-3700.

    [21] O. L. Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nature Nanotechnology, 2013, 8(7): 497-501.

    [22] M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, et al., “Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions,” Scientific Reports, 2013, 3: 1634-1-1634-5.

    [23] B. Radisavljevi′c, A. Radenovi′c, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nature Nanotechnology, 2011, 6(3): 147-150.

    [24] D. Krasnozhon, D. Lembke, C. Nyffeler, Y. Leblebici, and A. Kis, “MoS2 transistors operating at gigahertz frequencies,” Nano Letters, 2014, 14(10): 5905-5911.

    [25] J. Lee, Z. Wang, K. He, J. Shan, and X. L. Feng, “High frequency MoS2 nanomechanical resonators,” ACS Nano, 2013, 7(7): 6086-6091.

    [26] R. V. Leeuwen, A. C. Gomez, G. A. Steele, H. S. J. V. D. Zant, and W. J. Venstra, “Time-domain response of atomically thin MoS2 nanomechanical resonators,” Applied Physics Letters, 2014, 105(4): 041911-1-041911-3.

    [27] A. C. Gomez, R. V. Leeuwen, M. Buscema, H. S. J. V. D. Zant, G. A. Steele, and W. J. Venstra, “Single-layer MoS2 mechanical resonators,” Advanced Materials, 2013, 25(46): 6719-6723.

    [28] H. J. Chen and K. D. Zhu, “Coherent optical responses and their application in biomolecule mass sensing based on a monolayer MoS2 nanoresonator,” Journal of the Optical Society of America B, 2014, 31(7): 1684-1690.

    [29] J. B. Li, S. Xiao, S. Liang, M. D. He, N. C. Kim, Y. Luo, et al., “Switching freely between superluminal and subluminal light propagation in a monolayer MoS2 nanoresonator,” Optics Express, 2017, 25(12): 13567-13576.

    [30] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single-and few-layer MoS2,” ACS Nano, 2010, 4(5): 2695-2700.

    [31] T. Li, “Ideal strength and phonon instability in single-layer MoS2,” Physical Review B, Condensed Matter, 2012, 85(23): 235407.

    [32] Z. Wang, J. Lee, K. He, J. Shan, and P. X. L. Feng, “Embracing structural nonidealities and asymmetries in two-dimensional nanomechanical resonators,” Scientific Reports, 2014, 4: 3919-3925.

    [33] B. R. Carvalho, L. M. Malard, J. M. Alves, C. Fantini, and M. A. Pimenta, “Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering,” Physical Review Letters, 2015, 114(13): 136403-1-36403-5.

    [34] G. L. Frey, R. Tenne, M. J. Matthews, M. S. Dresselhaus, and G. Dresselhaus, “Raman and resonance Raman investigation of MoS2 nanoparticles,” Physical Review B, 1999, 60(4): 2883-2892.

    [35] X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, et al., “Coherent optical spectroscopy of a strongly driven quantum dot,” Science, 2007, 317(5840): 929-932.

    [36] S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Physical Review A, 1992, 46(1): R29-R32.

    [37] R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science, 2009, 326(5956): 1074-1077.

    [38] A. H. S. Naeini, T. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, et al., “Electromagnetically induced transparency and slow light with optomechanics,” Nature, 2011, 472(7341): 69-73.

    [39] H. Okamoto, A. Gourgout, C. Y. Chang, K. Onomitsu, I. Mahboob, E. Y. Chang, et al., “Coherent phonon manipulation in coupled mechanical resonators,” Nature Physics, 2013, 9(8): 480-484.

    [40] H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Letters, 2014, 14(8): 4581-4586.

    [41] J. J. Li and K. D. Zhu, “Tunable slow and fast light device based on a carbon nanotube resonator,” Optics Express, 2012, 20(6): 5840-5848.

    [42] A. H. S. Naeini, A. T. P. Mayer, J. Chan, M. Eichenfield, M. Winger, Q. Lin, et al., “Electromagnetically induced transparency and slow light with optomechanics,” Nature, 2014, 472: 69-73.

    Huajun CHEN. Manipulation of Coherent Optical Propagation Based on Monolayer MoS2 Resonator[J]. Photonic Sensors, 2019, 9(4): 317
    Download Citation