• Laser & Optoelectronics Progress
  • Vol. 57, Issue 23, 230604 (2020)
Baopeng Wang1、2, Jin Yu1、2、*, Yunzhe Wang1、2, Jingjing Meng1、2, Zeqiang Mo1、2, Jinduo Wang1、2, Shoujun Dai1、2, Jianguo He1、2, and Xiaodong Wang1、2
Author Affiliations
  • 1Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP57.230604 Cite this Article Set citation alerts
    Baopeng Wang, Jin Yu, Yunzhe Wang, Jingjing Meng, Zeqiang Mo, Jinduo Wang, Shoujun Dai, Jianguo He, Xiaodong Wang. Error-Performance Study of Intensity Modulation Technology in Atmospheric Laser Communication[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230604 Copy Citation Text show less
    Information transmission of atmospheric laser communication
    Fig. 1. Information transmission of atmospheric laser communication
    Symbol structure of OOK and pulse position class modulation schemes (m=3)
    Fig. 2. Symbol structure of OOK and pulse position class modulation schemes (m=3)
    Symbol structure of pulse interval class modulation schemes(m=3)
    Fig. 3. Symbol structure of pulse interval class modulation schemes(m=3)
    Symbol structure of pulse width class modulation schemes(m=3)
    Fig. 4. Symbol structure of pulse width class modulation schemes(m=3)
    Schematic of sampling judgement
    Fig. 5. Schematic of sampling judgement
    SER of different modulation schemes in Gaussian channel. (a) m=3; (b) m=5; (c) m=7; (d) m=9
    Fig. 6. SER of different modulation schemes in Gaussian channel. (a) m=3; (b) m=5; (c) m=7; (d) m=9
    SER of different modulation schemes in weak turbulence channel. (a) m=3; (b) m=5; (c) m=7; (d) m=9
    Fig. 7. SER of different modulation schemes in weak turbulence channel. (a) m=3; (b) m=5; (c) m=7; (d) m=9
    SER of different modulation schemes in moderate turbulence channel. (a) m=3; (b) m=5; (c) m=7; (d) m=9
    Fig. 8. SER of different modulation schemes in moderate turbulence channel. (a) m=3; (b) m=5; (c) m=7; (d) m=9
    Modulation schemeP0P1P2Modulation schemeP0P1P2
    OOK12120DPIM2m+12m+322m+30
    PPM2m-12m12m0DHPIM2m+α+22m+4α+23α2m+4α+20
    DPPM2m-12m+122m+10DPPIM2m+1+α-42m+1+4α3α+42m+1+4α0
    MPPMn-pnpn0DAPIM2m-1+12m-1+312m-1+312m-1+3
    DDPPM2m+1-4+α2m+1-4+4α3α2m+1-4+4α0FDPIM2m+12m+432m+40
    Dual Amplitude PPM2m-1-12m-112m12mFDAPIM2m+12m+312m+312m+3
    Differential Amplitude PPML-1L+11L+11L+1PWM2m-12m+12m+12m+10
    SPPM2m-12m+232m+20PPWM2m+1-2m-r-12m+12m-r+12m+10
    SDPPMn-2n2n0DPPWM2m-12m-r+2m2m-r+12m-r+2m0
    OPPMp-1p1p0
    Table 1. Pulse width parameters of different modulation schemes
    Baopeng Wang, Jin Yu, Yunzhe Wang, Jingjing Meng, Zeqiang Mo, Jinduo Wang, Shoujun Dai, Jianguo He, Xiaodong Wang. Error-Performance Study of Intensity Modulation Technology in Atmospheric Laser Communication[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230604
    Download Citation