• Infrared and Laser Engineering
  • Vol. 47, Issue 8, 817007 (2018)
Yang Shang, Zhou Zhaofa, Liu Xianyi, and Zhang Hui
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201847.0817007 Cite this Article
    Yang Shang, Zhou Zhaofa, Liu Xianyi, Zhang Hui. Research on positioning method of digital zenith camera under rough leveling state[J]. Infrared and Laser Engineering, 2018, 47(8): 817007 Copy Citation Text show less
    References

    [1] Hirt C, Bürki B, Guillaume S, et al. Digital zenith cameras-state-of-the-art astrogeodetic technology for Australian Geodesy[C]//FIG Congress-Remote Sensing and Optical Techniques I, 2010: 1-16.

    [2] Hirt C, Seeber G. Accuracy analysis of vertical deflection data observed with the Hannover digital zenith camera system TZK2-D[J]. Journal of Geodesy, 2008, 82(6): 347-356.

    [3] Hirt C, Reese B, Enslin H. On the accuracy of vertical deflection measurement using the high-precision digital zenith camera system TZK2-D[C]//Gravity, Geoid and Space Mission, 2005: 197-201.

    [4] Guo Min, Zhang Hongying. Application of CCD digital photography in astronomical positioning measurement[J]. Geomatics Technology and Equipment, 2005, 1(7): 28-29. (in Chinese)

    [5] Wang Bo, Tian Lili, Wang Zheng, et al. The image and data processing in digital zenith camera[J]. Chin Sci Bull, 2014, 59(12): 1100- 1107.

    [6] Zhang Xihui, Zhou Zhaofa, Liu Xianyi, et al. Analysis of the fast positioning method of digital zenith camera in tilt state[J]. Infrared and Laser Engineering, 2018, 47(2): 0217002. (in Chinese)

    [7] Liu Xianyi, Zhou Zhaofa, Zhang Zhili, et al. Research on the transformation of coordinates astronomical fixation[J].Electronics Optics & Control, 2016, 23(1): 11-14. (in Chinese)

    [8] Qin Yongyaun. Inertial Navigation[M]. Beijing: Science Press, 2014: 244-252. (in Chinese)

    [9] Zhou Zhaofa, Liu Xianyi, Zhang Zhili, et al. Research on two-axis tilt sensor based on digital zenith camera[J]. Acta Photonic Sinica, 2015, 44(8): 08120021. (in Chinese)

    [10] Yanc Y, He H, Ru C. Adaptively robust filtering for kinematic geodetic positioning[J]. Journal of Ueodesy, 2001, 76(2): 109-116.

    [11] Yang Y, Song I, Xu T. Robust estimator for correlated observations based on bifactor equivalent weights [J]. Journal of Geodesy, 2002, 76(6):353-358.

    [12] Yang Yuanxi. Equivalent weight principle: parameter adjustment model robust least squares solution[J]. Bulletin of Surveying and Mapping, 1994, 42(6): 33-35. (in Chinese)

    [13] Yang Yuanxi. Robust estimation and its influence function of surveying adjustment mode[J]. Journal of the Institute of Surveying and Mapping, 1994, 11(2): 77-82. (in Chinese)

    [14] Zhang Xinshuai, Zhou Zhaofa, Huang Xianxiang. Improved positioning method for digital zenith camera[J]. Infrared and Laser Engineering, 2015, 44(4): 1254-1259. (in Chinese)

    [15] Zhang Zhili, Liu Xianyi, Zhou Zhaofa, et al. Infiuence of turntable error on axis error in digital zenith camera[J].Optics and Precision Engineering, 2015, 23(11): 3090-3096. (in Chinese)

    [16] Liu Xianyi, Zhou Zhaofa, Zhang Zhili, et al. The application of spherical triangle method in digital zenith camera[J]. Journal of Geodesy and Geodynamics, 2015, 35(4): 726-728.

    [17] Tian Lili, Guo Jinyun, Han Yanben, et al. Digital zenith telescope prototype of china[J]. Chin Sci Bull, 2014, 59(12): 1094-1099.

    Yang Shang, Zhou Zhaofa, Liu Xianyi, Zhang Hui. Research on positioning method of digital zenith camera under rough leveling state[J]. Infrared and Laser Engineering, 2018, 47(8): 817007
    Download Citation