• Photonics Research
  • Vol. 11, Issue 11, 1838 (2023)
Yu-Xuan Ren1、2, Joshua Lamstein2、3, Chensong Zhang2、4, Claudio Conti5, Demetrios N. Christodoulides6, and Zhigang Chen2、7、*
Author Affiliations
  • 1Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
  • 2Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132, USA
  • 3Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, California 94158, USA
  • 4Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
  • 5Department of Physics, University Sapienza, I-00185 Roma, Italy
  • 6Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA
  • 7TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
  • show less
    DOI: 10.1364/PRJ.496013 Cite this Article Set citation alerts
    Yu-Xuan Ren, Joshua Lamstein, Chensong Zhang, Claudio Conti, Demetrios N. Christodoulides, Zhigang Chen. Biophotonic rogue waves in red blood cell suspensions[J]. Photonics Research, 2023, 11(11): 1838 Copy Citation Text show less
    References

    [1] S. Birkholz, C. Brée, A. Demircan, G. Steinmeyer. Predictability of rogue events. Phys. Rev. Lett., 114, 213901(2015).

    [2] M. Tlidi, M. Taki. Rogue waves in nonlinear optics. Adv. Opt. Photon., 14, 87-147(2022).

    [3] N. Akhmediev, B. Kibler, F. Baronio, M. Belić, W.-P. Zhong, Y. Zhang, W. Chang, J. M. Soto-Crespo, P. Vouzas, P. Grelu, C. Lecaplain, K. Hammani, S. Rica, A. Picozzi, M. Tlidi, K. Panajotov, A. Mussot, A. Bendahmane, P. Szriftgiser, G. Genty, J. Dudley, A. Kudlinski, A. Demircan, U. Morgner, S. Amiraranashvili, C. Bree, G. Steinmeyer, C. Masoller, N. G. R. Broderick, A. F. J. Runge, M. Erkintalo, S. Residori, U. Bortolozzo, F. T. Arecchi, S. Wabnitz, C. G. Tiofack, S. Coulibaly, M. Taki. Roadmap on optical rogue waves and extreme events. J. Opt., 18, 063001(2016).

    [4] J. M. Dudley, G. Genty, A. Mussot, A. Chabchoub, F. Dias. Rogue waves and analogies in optics and oceanography. Nat. Rev. Phys., 1, 675-689(2019).

    [5] M. Hopkin. Sea snapshots will map frequency of freak waves. Nature, 430, 492-493(2004).

    [6] K. Dusthe, H. E. Krogstad, P. Müller. Oceanic rogue waves. Annu. Rev. Fluid Mech., 40, 287-310(2008).

    [7] A. Chabchoub, N. P. Hoffmann, N. Akhmediev. Rogue wave observation in a water wave tank. Phys. Rev. Lett., 106, 204502(2011).

    [8] M. Onorato, T. Waseda, A. Toffoli, L. Cavaleri, O. Gramstad, P. A. E. M. Janssen, T. Kinoshita, J. Monbaliu, N. Mori, A. R. Osborne, M. Serio, C. T. Stansberg, H. Tamura, K. Trulsen. Statistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events. Phys. Rev. Lett., 102, 114502(2009).

    [9] K. Hasselmann. On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory. J. Fluid Mech., 12, 481-500(1962).

    [10] D. Pierangeli, F. Di Mei, C. Conti, A. J. Agranat, E. DelRe. Spatial rogue waves in photorefractive ferroelectrics. Phys. Rev. Lett., 115, 093901(2015).

    [11] N. Marsal, V. Caullet, D. Wolfersberger, M. Sciamanna. Spatial rogue waves in a photorefractive pattern-forming system. Opt. Lett., 39, 3690-3693(2014).

    [12] G. Marcucci, D. Pierangeli, A. J. Agranat, R.-K. Lee, E. DelRe, C. Conti. Topological control of extreme waves. Nat. Commun., 10, 5090(2019).

    [13] M. Shats, H. Punzmann, H. Xia. Capillary rogue waves. Phys. Rev. Lett., 104, 104503(2010).

    [14] A. Montina, U. Bortolozzo, S. Residori, F. T. Arecchi. Non-Gaussian statistics and extreme waves in a nonlinear optical cavity. Phys. Rev. Lett., 103, 173901(2009).

    [15] A. Safari, R. Fickler, M. J. Padgett, R. W. Boyd. Generation of caustics and rogue waves from nonlinear instability. Phys. Rev. Lett., 119, 203901(2017).

    [16] D. R. Solli, C. Ropers, P. Koonath, B. Jalali. Optical rogue waves. Nature, 450, 1054-1057(2007).

    [17] Y. Zhou, Y.-X. Ren, J. Shi, K. K. Y. Wong. Breathing dissipative soliton explosions in a bidirectional ultrafast fiber laser. Photon. Res., 8, 1566-1572(2020).

    [18] Y. Du, Z. He, H. Zhang, Q. Gao, C. Zeng, D. Mao, J. Zhao. Origin of spectral rogue waves in incoherent optical wave packets. Phys. Rev. A, 106, 053509(2022).

    [19] Y. Zhou, Y.-X. Ren, J. Shi, H. Mao, K. K. Y. Wong. Buildup and dissociation dynamics of dissipative optical soliton molecules. Optica, 7, 965-972(2020).

    [20] F. Meng, C. Lapre, C. Billet, T. Sylvestre, J.-M. Merolla, C. Finot, S. K. Turitsyn, G. Genty, J. M. Dudley. Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser. Nat. Commun., 12, 5567(2021).

    [21] D. Rivas, A. Szameit, R. A. Vicencio. Rogue waves in disordered 1D photonic lattices. Sci. Rep., 10, 13064(2020).

    [22] A. N. Black, S. Choudhary, E. S. Arroyo-Rivera, H. Woodworth, R. W. Boyd. Suppression of nonlinear optical rogue wave formation using polarization-structured beams. Phys. Rev. Lett., 129, 133902(2022).

    [23] D. Kip, M. Soljacic, M. Segev, E. Eugenieva, D. N. Christodoulides. Modulation instability and pattern formation in spatially incoherent light beams. Science, 290, 495-498(2000).

    [24] N. N. Akhmediev, V. I. Korneev. Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys., 69, 1089-1093(1986).

    [25] N. Akhmediev, J. M. Soto-Crespo, A. Ankiewicz. Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A, 373, 2137-2145(2009).

    [26] C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller, J. R. R. Leite, J. R. Tredicce. Deterministic optical rogue waves. Phys. Rev. Lett., 107, 053901(2011).

    [27] C. Kharif, E. Pelinovsky. Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B., 22, 603-634(2003).

    [28] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J. M. Dudley. The Peregrine soliton in nonlinear fibre optics. Nat. Phys., 6, 790-795(2010).

    [29] J. M. Dudley, F. Dias, M. Erkintalo, G. Genty. Instabilities, breathers and rogue waves in optics. Nat. Photonics, 8, 755-764(2014).

    [30] B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, J. M. Dudley. Observation of Kuznetsov-Ma soliton dynamics in optical fibre. Sci. Rep., 2, 463(2012).

    [31] M. Leonetti, C. Conti. Observation of three dimensional optical rogue waves through obstacles. Appl. Phys. Lett., 106, 254103(2015).

    [32] V. B. Efimov, A. N. Ganshin, G. V. Kolmakov, P. V. E. McClintock, L. P. Mezhov-Deglin. Rogue waves in superfluid helium. Eur. Phys. J. Spec. Top., 185, 181-193(2010).

    [33] R. Höhmann, U. Kuhl, H. J. Stöckmann, L. Kaplan, E. J. Heller. Freak waves in the linear regime: a microwave study. Phys. Rev. Lett., 104, 093901(2010).

    [34] C. Liu, R. E. C. van der Wel, N. Rotenberg, L. Kuipers, T. F. Krauss, A. Di Falco, A. Fratalocchi. Triggering extreme events at the nanoscale in photonic seas. Nat. Phys., 11, 358-363(2015).

    [35] F. T. Arecchi, U. Bortolozzo, A. Montina, S. Residori. Granularity and inhomogeneity are the joint generators of optical rogue waves. Phys. Rev. Lett., 106, 153901(2011).

    [36] F. Fedele, J. Brennan, S. Ponce de León, J. Dudley, F. Dias. Real world ocean rogue waves explained without the modulational instability. Sci. Rep., 6, 27715(2016).

    [37] A. Mathis, L. Froehly, S. Toenger, F. Dias, G. Genty, J. M. Dudley. Caustics and rogue waves in an optical sea. Sci. Rep., 5, 12822(2015).

    [38] A. Chowdury, W. Chang, M. Battiato. From rogue wave solution to solitons. Phys. Rev. E, 107, 014212(2023).

    [39] D. Eeltink, H. Branger, C. Luneau, Y. He, A. Chabchoub, J. Kasparian, T. S. van den Bremer, T. P. Sapsis. Nonlinear wave evolution with data-driven breaking. Nat. Commun., 13, 2343(2022).

    [40] M. Närhi, L. Salmela, J. Toivonen, C. Billet, J. M. Dudley, G. Genty. Machine learning analysis of extreme events in optical fibre modulation instability. Nat. Commun., 9, 4923(2018).

    [41] G. Marcucci, D. Pierangeli, C. Conti. Theory of neuromorphic computing by waves: machine learning by rogue waves, dispersive shocks, and solitons. Phys. Rev. Lett., 125, 093901(2020).

    [42] K. G. Phillips, S. L. Jacques, O. J. T. McCarty. Measurement of single cell refractive index, dry mass, volume, and density using a transillumination microscope. Phys. Rev. Lett., 109, 118105(2012).

    [43] Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, C. Depeursinge. Marker-free phase nanoscopy. Nat. Photonics, 7, 113-117(2013).

    [44] A. Roggan, M. Friebel, K. Doerschel, A. Hahn, G. J. Mueller. Optical properties of circulating human blood in the wavelength range 400-2500 nm. J. Biomed. Opt., 4, 36-46(1999).

    [45] L. Miccio, P. Memmolo, F. Merola, P. A. Netti, P. Ferraro. Red blood cell as an adaptive optofluidic microlens. Nat. Commun., 6, 6502(2015).

    [46] P. J. Reece, E. M. Wright, K. Dholakia. Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter. Phys. Rev. Lett., 98, 203902(2007).

    [47] C. Conti, G. Ruocco, S. Trillo. Optical spatial solitons in soft matter. Phys. Rev. Lett., 95, 183902(2005).

    [48] A. Bezryadina, T. Hansson, R. Gautam, B. Wetzel, G. Siggins, A. Kalmbach, J. Lamstein, D. Gallardo, E. J. Carpenter, A. Ichimura, R. Morandotti, Z. Chen. Nonlinear self-action of light through biological suspensions. Phys. Rev. Lett., 119, 058101(2017).

    [49] R. Gautam, Y. Xiang, J. Lamstein, Y. Liang, A. Bezryadina, G. Liang, T. Hansson, B. Wetzel, D. Preece, A. White, M. Silverman, S. Kazarian, J. Xu, R. Morandotti, Z. Chen. Optical force-induced nonlinearity and self-guiding of light in human red blood cell suspensions. Light Sci. Appl., 8, 31(2019).

    [50] R. Gautam, A. Bezryadina, Y. Xiang, T. Hansson, Y. Liang, G. Liang, J. Lamstein, N. Perez, B. Wetzel, R. Morandotti, Z. Chen. Nonlinear optical response and self-trapping of light in biological suspensions. Adv. Phys. X, 5, 1778526(2020).

    [51] N. Perez, J. Chambers, Z. Chen, A. Bezryadina. Nonlinear self-trapping and guiding of light at different wavelengths with sheep blood. Opt. Lett., 46, 629-632(2021).

    [52] D. Pierangeli, G. Perini, V. Palmieri, I. Grecco, G. Friggeri, M. De Spirito, M. Papi, E. DelRe, C. Conti. Extreme transport of light in spheroids of tumor cells. Nat. Commun., 14, 4662(2023).

    [53] A. Armaroli, C. Conti, F. Biancalana. Rogue solitons in optical fibers: a dynamical process in a complex energy landscape?. Optica, 2, 497-504(2015).

    [54] Y.-X. Ren, J. Lamstein, T. S. Kelly, C. Zhang, Y. Sun, C. Conti, D. N. Christodoulides, Z. Chen. Rogue waves in red blood cell suspensions. Conference on Lasers and Electro-Optics, FM4F.1(2017).

    [55] Y.-X. Ren, T. S. Kelly, C. Zhang, H. Xu, Z. Chen. Soliton-mediated orientational ordering of gold nanorods and birefringence in plasmonic suspensions. Opt. Lett., 42, 627-630(2017).

    [56] T. S. Kelly, Y.-X. Ren, A. Samadi, A. Bezryadina, D. Christodoulides, Z. Chen. Guiding and nonlinear coupling of light in plasmonic nanosuspensions. Opt. Lett., 41, 3817-3820(2016).

    [57] N. Akhmediev, A. Ankiewicz, M. Taki. Waves that appear from nowhere and disappear without a trace. Phys. Lett. A, 373, 675-678(2009).

    [58] J. M. Higgins, D. T. Eddington, S. N. Bhatia, L. Mahadevan. Statistical dynamics of flowing red blood cells by morphological image processing. PLoS Comput. Biol., 5, e1000288(2009).

    [59] H. Martin, N. Y. Anna, S. Dietrich. A scattering phase function for blood with physiological haematocrit. Phys. Med. Biol., 46, N65-N69(2001).

    [60] Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun., 2, 218(2011).

    [61] A. Ashkin. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J., 61, 569-582(1992).

    [62] A. Ashkin, J. M. Dziedzic, P. W. Smith. Continuous-wave self-focusing and self-trapping of light in artificial Kerr media. Opt. Lett., 7, 276-278(1982).

    [63] A. J. Palmer. Nonlinear optics in aerosols. Opt. Lett., 5, 54-55(1980).

    [64] P. Suret, R. E. Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj, S. Bielawski. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat. Commun., 7, 13136(2016).

    [65] A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, D. N. Christodoulides. Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys. Rep., 542, 1-132(2014).

    [66] R. A. McPherson, N. Vajpayee, M. R. Pincus, S. Graham, S. Bem. Basic examination of blood and bone marrow. Henry’s Clinical Diagnosis and Management by Laboratory Methods, 509-535(2011).

    [67] Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, S. Suresh. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 105, 13730-13735(2008).

    [68] P. Walczak, S. Randoux, P. Suret. Optical rogue waves in integrable turbulence. Phys. Rev. Lett., 114, 143903(2015).

    [69] J. M. Soto-Crespo, N. Devine, N. Akhmediev. Integrable turbulence and rogue waves: breathers or solitons?. Phys. Rev. Lett., 116, 103901(2016).

    [70] M. Onorato, S. Residori, U. Bortolozzo, A. Montina, F. T. Arecchi. Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep., 528, 47-89(2013).

    Yu-Xuan Ren, Joshua Lamstein, Chensong Zhang, Claudio Conti, Demetrios N. Christodoulides, Zhigang Chen. Biophotonic rogue waves in red blood cell suspensions[J]. Photonics Research, 2023, 11(11): 1838
    Download Citation