• Chinese Journal of Quantum Electronics
  • Vol. 37, Issue 5, 513 (2020)
Hao TENG1、*, Xin LU1, Zhongwei SHEN1, Shiyou CHEN1, Rongyi CHEN2, Wenshou WEI2, and Zhiyi WEI1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2020.05.001 Cite this Article
    TENG Hao, LU Xin, SHEN Zhongwei, CHEN Shiyou, CHEN Rongyi, WEI Wenshou, WEI Zhiyi. Properties of long plasma-channel generated by TW femtosecond laser in natural environmental air[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 513 Copy Citation Text show less
    References

    [2] Braun A, Korn G, Liu X, et al. Self-channeling of high-peak-power femtosecond laser-pulses in air [J]. Optics Letters, 1995, 20(1): 73-75.

    [3] Chin S L, Hosseini S A, Liu W, et al. The propagation of powerful femtosecond laser pulses in optical media: Physics, application, and new challenges [J]. Canadian Journal of Physics, 2005, 83(9): 863-905.

    [4] Berge L, Skupin S, Nuter R, et al. Ultrashort filaments of light in weakly ionized, optically transparent media [J]. Reports on Progressin Physics, 2007, 70(10): 1633-1713.

    [5] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media [J]. Physics Reports, 2007, 441(2): 47-189.

    [6] Béjot P, Kasparian J, Henin S, et al. Higher-order Kerr terms allow ionization-free filamentation in gases [J]. Physical Review Letters, 2010, 104(10): 103903.

    [7] Nibbering E T J, Curley P F, Grillon G, et al. Conical emission from self-guided femtosecond pulses in air [J]. Optics Letters, 1996, 21(1): 62-64.

    [8] Alfano R R. The Supercontinuum Laser Source [M]. New York: Springer, 2016: 281-298.

    [9] BallL M. The laser lightning rod system: Thunderstorm domestication [J]. Applied Optics, 1974, 13(10): 2292-2296.

    [10] Zhao X M, Diels J C, Wang C Y, et al. Femtosecond ultraviolet-laser pulse induced lightning discharges in gases [J]. IEEE Journal of Quantum Electronics, 1995, 31(3): 599-612.

    [11] Rodriguez M, Sauerbrey R, Wille H, et al. Triggering and guiding megavolt discharges by use of laser-induced ionized filaments [J]. Optics Letters, 2002, 27(9): 772-774.

    [12] Kasparian J, Ackermann R, André Y B, et al. Electric events synchronized with laser filaments in thunderclouds [J]. Optics Express, 2008, 169(8): 5757-5763.

    [13] Chateauneuf M, Payeur S, Dubois J, et al. Microwave guiding in air by a cylindrical filament array waveguide [J]. Applied Physics Letters, 2008, 92(9): 091104.

    [14] Bogatov N A, Kuznetsov A I, Smirnov A I, et al. Channeling of microwave radiation in a double line containing a plasma channel produced by intense femtosecond laser pulses in air [J]. Quantum Electronics, 2009, 39(10): 985-988.

    [15] Daigle J F, Kamali Y, Roy G, et al. Remote filament-induced fluorescence spectroscopy from thin clouds of smoke [J]. Applied Physics B, 2008, 93(11): 759-762.

    [16] Mèjean G, Kasparian J, Yu J, et al. Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system [J]. Applied Physics B, 2004, 78(5): 535-537.

    [17] Rohwetter P, Kasparian J, Stelmaszczyk K, et al. Laser-induced water condensation in air [J]. Nature Photonics, 2010, 4(7): 451-456.

    [18] Ju J J, Liu J S, Wang C, et al. Laser-filamentation-induced condensation and snow formation in a cloud chamber [J]. Optics Letters, 2012, 37(7): 1214-1216.

    [19] Rosenthal E W, Jhajj N, Wahlstand J K, et al. Collection of remote optical signals by air waveguides [J]. Optica, 2014, 1(1): 5-9.

    [20] Kasparian J, Rodriguez M, Mèjean G, et al. White-light filaments for atmospheric analysis [J]. Science, 2003, 301(5629): 61-64.

    [21] Bergé L, Skupin S, Lederer F, et al. Multiple filamentation of terawatt laser pulses in air [J]. Physical Review Letters, 2004, 92(22): 225002.

    [22] Rodriguez M, Bourayou R, Mejean G, et al. Kilometer-range nonlinear propagation of femtosecond laser pulses [J]. Physical Review E, 2004, 69(3 Pt 2): 036607.

    [23] Mechain G, Couairon A, Andre Y B, et al. Long-range self-channeling of infrared laser pulses in air: A new propagation regime without ionization [J]. Applied Physics B, 2004, 79(3): 379-382.

    [24] Mechain G, D’Amico C, Andre Y B, et al. Range of plasma filaments created in air by a multi-terawatt femtosecond laser [J]. Optics Communications, 2005, 247(1): 171-180.

    [25] Hao Z Q, Zhang J, Zhang Z, et al. Characteristics of multiple filaments generated by femtosecond laser pulses in air: Prefocused versus free propagation [J]. Physical Review E, 2006, 74(6 Pt 2): 066402.

    [26] Durand M, Houard A, Prade B, et al. Kilometer range filamentation [J]. Optics Express, 2013, 21(22): 26836-26845.

    [27] Apeksimov D V, Geints Y E, Zemlyanov A A, et al. Control of the domain of multiple filamentation of terawatt laser pulses along a hundred-meter air path [J]. Quantum Electronics, 2015, 45(5): 40814.

    [28] Moulton P F. Spectroscopic and laser characteristics of Ti: Al2O3 [J]. Journal of the Optical Society of America B, 1986, 3(1): 125-133.

    [29] Strickland D, Mourou G. Compression of amplified chirped optical pulses [J]. Optics Communications, 1985, 55(3): 219-221.

    [30] Kosareva O G, Kandidov V P, Brodeur A, et al. Conical emission from laser-plasma interactions in the filamentation of powerful ultrashort laser pulses in air [J]. Optics Letters, 1997, 22(17): 1332-1334.

    [31] Kandidov V P, Kosareva O G, Tamarov M P, et al. Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmosphere [J]. Quantum Electronics, 1999, 29(10): 911-915.

    [32] Chin S L, Talebpour A, Yang J, et al. Filamentation of femtosecond laser pulses in turbulent air [J]. Applied Physics B-Lasers and Optics, 2002, 74(1): 67-76.

    [33] Ma Y Y, Lu X, Xi T T, et al. Widening of long-range femtosecond laser filaments in turbulent air [J]. Optics Express, 2008, 16(12): 8332-8341.

    [34] Tzortzakis S, Prade B, Franco M, et al. Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air [J]. Optics Communications, 2000, 181(1): 123-127.

    [35] Hao Z Q, Zhang J, Li Y T, et al. Prolongation of the fluorescence lifetime of plasma channels in air induced by femtosecond laser pulses [J]. Applied Physics B, 2005, 80(4): 627-630.

    [36] Liu X L, Lu X, Ma J L, et al. Long lifetime air plasma channel generated by femtosecond laser pulse sequence [J]. Optics Express, 2012, 20(6): 5968-5973.

    [37] Tzortzakis S, Franco M A, Andre Y B, et al. Formation of a conducting channel in air by self-guided femtosecond laser pulses [J]. Physical Review E, 1999, 60(4 Pt A): R3505-R3507.

    [38] Schillinger H, Sauerbrey R. Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses [J]. Applied Physics B, 1999, 68(4): 753-756.

    [39] Lu X, Chen S Y, Ma J L, et al. Quasi-steady-state air plasma channel produced by a femtosecond laser pulse sequence [J]. Scientific Reports, 2015, 5: 15515.

    [40] Clerici M, Hu Y, Lassonde P, et al. Laser-assisted guiding of electric discharges around objects [J]. Science Advances, 2015, 1(5): e1400111.

    TENG Hao, LU Xin, SHEN Zhongwei, CHEN Shiyou, CHEN Rongyi, WEI Wenshou, WEI Zhiyi. Properties of long plasma-channel generated by TW femtosecond laser in natural environmental air[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 513
    Download Citation