• Chinese Journal of Lasers
  • Vol. 48, Issue 19, 1914003 (2021)
Longqing Cong*
Author Affiliations
  • Department of Electrical and Electronic Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
  • show less
    DOI: 10.3788/CJL202148.1914003 Cite this Article Set citation alerts
    Longqing Cong. Active Terahertz Metadevices[J]. Chinese Journal of Lasers, 2021, 48(19): 1914003 Copy Citation Text show less
    References

    [1] Ma Z T, Geng Z X, Fan Z Y et al. Modulators for terahertz communication: the current state of the art[J]. Research, 2019, 1-22(2019).

    [2] Rahm M, Li J S, Padilla W J. THz wave modulators: a brief review on different modulation techniques[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 34, 1-27(2013).

    [3] Zhang X C. Terahertz wave imaging: horizons and hurdles[J]. Physics in Medicine and Biology, 47, 3667-3677(2002).

    [4] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [5] Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics[J]. Nature Photonics, 10, 371-379(2016).

    [6] Sengupta K, Nagatsuma T, Mittleman D M. Terahertz integrated electronic and hybrid electronic-photonic systems[J]. Nature Electronics, 1, 622-635(2018).

    [7] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 13, 13-20(2019).

    [8] Watts C M, Shrekenhamer D, Montoya J et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 8, 605-609(2014).

    [9] Shaltout A M, Shalaev V M, Brongersma M L. Spatiotemporal light control with active metasurfaces[J]. Science, 364, eaat3100(2019).

    [10] He Q, Sun S, Zhou L. Tunable/reconfigurable metasurfaces: physics and applications[J]. Research, 2019, 1849272(2019).

    [11] Hashemi M R, Cakmakyapan S, Jarrahi M. Reconfigurable metamaterials for terahertz wave manipulation[J]. Reports on Progress in Physics, 80, 094501(2017).

    [12] Yang C S, Tang T T, Chen P H et al. Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes[J]. Optics Letters, 39, 2511-2513(2014).

    [13] Wu H Y, Hsieh C F, Tang T T et al. Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter[J]. IEEE Photonics Technology Letters, 18, 1488-1490(2006).

    [14] Chen X Q, Li K D, Zhang R et al. Highly efficient ultra-broadband terahertz modulation using bidirectional switching of liquid crystals[J]. Advanced Optical Materials, 7, 1901321(2019).

    [15] Reuter M, Vieweg N, Fischer B M et al. Highly birefringent, low-loss liquid crystals for terahertz applications[J]. APL Materials, 1, 012107(2013).

    [16] Wang L, Lin X W, Hu W et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes[J]. Light: Science & Applications, 4, e253(2015).

    [17] Shrekenhamer D, Chen W C, Padilla W J. Liquid crystal tunable metamaterial absorber[J]. Physical Review Letters, 110, 177403(2013).

    [18] Savo S, Shrekenhamer D, Padilla W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications[J]. Advanced Optical Materials, 2, 275-279(2014).

    [19] Wu J B, Shen Z, Ge S J et al. Liquid crystal programmable metasurface for terahertz beam steering[J]. Applied Physics Letters, 116, 131104(2020).

    [20] Buchnev O, Podoliak N, Kaltenecker K et al. Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for THz applications[J]. ACS Photonics, 7, 3199-3206(2020).

    [21] Jerome B. Surface effects and anchoring in liquid crystals[J]. Reports on Progress in Physics, 54, 391-451(1991).

    [22] Gannon M G J, Faber T E. The surface tension of nematic liquid crystals[J]. Philosophical Magazine A, 37, 117-135(1978).

    [23] Borshch V, Shiyanovskii S V, Lavrentovich O D. Nanosecond electro-optic switching of a liquid crystal[J]. Physical Review Letters, 111, 107802(2013).

    [24] Rebeiz G M. RF MEMS: theory, design, and technology[M](2004).

    [25] Rebeiz G M, Patel C D, Han S K et al. The search for a reliable MEMS switch[J]. IEEE Microwave Magazine, 14, 57-67(2013).

    [26] Unlu M, Demir S, Akin T. A 15--40-GHz frequency reconfigurable RF MEMS phase shifter[J]. IEEE Transactions on Microwave Theory and Techniques, 61, 2865-2877(2013).

    [27] Zohur A, Mopidevi H, Rodrigo D et al. RF MEMS reconfigurable two-band antenna[J]. IEEE Antennas and Wireless Propagation Letters, 12, 72-75(2013).

    [28] Unlu M, Topalli K, Atasoy H I et al. A reconfigurable RF MEMS triple stub impedance matching network[C]. //2006 European Microwave Conference, September 10-15, 2006, Manchester, UK., 1370-1373(2006).

    [29] Zhu W M, Liu A Q, Bourouina T et al. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy[J]. Nature Communications, 3, 1274(2012).

    [30] Tao H, Strikwerda A C, Fan K et al. Reconfigurable terahertz metamaterials[J]. Physical Review Letters, 103, 147401(2009).

    [31] Pitchappa P, Ho C P, Cong L Q et al. Reconfigurable digital metamaterial for dynamic switching of terahertz anisotropy[J]. Advanced Optical Materials, 4, 391-398(2016).

    [32] Cong L Q, Pitchappa P, Lee C et al. Active phase transition via loss engineering in a terahertz MEMS metamaterial[J]. Advanced Materials, 29, 1700733(2017).

    [33] Cong L Q, Pitchappa P, Wu Y et al. Active multifunctional microelectromechanical system metadevices: applications in polarization control, wavefront deflection, and holograms[J]. Advanced Optical Materials, 5, 1600716(2017).

    [34] Cong L Q, Pitchappa P, Wang N et al. Electrically programmable terahertz diatomic metamolecules for chiral optical control[J]. Research, 2019, 1-11(2019).

    [35] Unlu M, Hashemi M R, Berry C W et al. Switchable scattering meta-surfaces for broadband terahertz modulation[J]. Scientific Reports, 4, 5708(2014).

    [36] Cong L Q, Xu N N, Gu J Q et al. Highly flexible broadband terahertz metamaterial quarter-wave plate[J]. Laser & Photonics Reviews, 8, 626-632(2014).

    [37] Cong L Q, Cao W, Zhang X Q et al. A perfect metamaterial polarization rotator[J]. Applied Physics Letters, 103, 171107(2013).

    [38] Cong L Q, Xu N N, Zhang W L et al. Polarization control in terahertz metasurfaces with the lowest order rotational symmetry[J]. Advanced Optical Materials, 3, 1176-1183(2015).

    [39] Zhao X G, Schalch J, Zhang J D et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies[J]. Optica, 5, 303-310(2018).

    [40] Ou J Y, Plum E, Zhang J et al. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared[J]. Nature Nanotechnology, 8, 252-255(2013).

    [41] Zheludev N I, Plum E. Reconfigurable nanomechanical photonic metamaterials[J]. Nature Nanotechnology, 11, 16-22(2016).

    [42] Kan T, Isozaki A, Kanda N et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals[J]. Nature Communications, 6, 8422(2015).

    [43] Kan T, Isozaki A, Kanda N et al. Spiral metamaterial for active tuning of optical activity[J]. Applied Physics Letters, 102, 221906(2013).

    [44] She A, Zhang S, Shian S et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 4, eaap9957(2018).

    [45] Arbabi E, Arbabi A, Kamali S M et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 9, 812(2018).

    [46] Roy T, Zhang S Y, Jung I W et al. Dynamic metasurface lens based on MEMS technology[J]. APL Photonics, 3, 021302(2018).

    [47] Demir K, Unlu M. Miniature MEMS: novel key components toward terahertz reconfigurability[J]. Journal of Microelectromechanical Systems, 29, 455-467(2020).

    [48] Alius H, Dodel G. Amplitude-, phase-, and frequency modulation of far-infrared radiation by optical excitation of silicon[J]. Infrared Physics, 32, 1-11(1991).

    [49] Chen H T, O’Hara J F, Azad A K et al. Experimental demonstration of frequency-agile terahertz metamaterials[J]. Nature Photonics, 2, 295-298(2008).

    [50] Gu J Q, Singh R, Liu X J et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications, 3, 1151(2012).

    [51] Manjappa M, Srivastava Y K, Cong L Q et al. Active photoswitching of sharp Fano resonances in THz metadevices[J]. Advanced Materials, 29, 1603355(2017).

    [52] Zhang S, Zhou J F, Park Y S et al. Photoinduced handedness switching in terahertz chiral metamolecules[J]. Nature Communications, 3, 942(2012).

    [53] Cong L, Srivastava Y K, Zhang H et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting[J]. Light: Science & Applications, 7, 28(2018).

    [54] Lv T T, Zhu Z, Shi J H et al. Optically controlled background-free terahertz switching in chiral metamaterial[J]. Optics Letters, 39, 3066-3069(2014).

    [55] Kivshar Y. All-dielectric meta-optics and non-linear nanophotonics[J]. National Science Review, 5, 144-158(2018).

    [56] Fan K B, Suen J Y, Liu X Y et al. All-dielectric metasurface absorbers for uncooled terahertz imaging[J]. Optica, 4, 601-604(2017).

    [57] Chen W T, Zhu A Y, Sanjeev V et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 13, 220-226(2018).

    [58] Wang S, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).

    [59] Yang Y M, Wang W Y, Moitra P et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 14, 1394-1399(2014).

    [60] Kruk S, Kivshar Y. Functional meta-optics and nanophotonics governed by Mie resonances[J]. ACS Photonics, 4, 2638-2649(2017).

    [61] Kuznetsov A I, Miroshnichenko A E, Brongersma M L et al. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).

    [62] Genevet P, Capasso F, Aieta F et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 4, 139-152(2017).

    [63] Fan K, Zhang J, Liu X et al. Phototunable dielectric Huygens’ metasurfaces[J]. Advanced Materials, 30, e1800278(2018).

    [64] Cardin A, Fan K, Padilla W. Role of loss in all-dielectric metasurfaces[J]. Optics Express, 26, 17669-17679(2018).

    [65] Zhao X G, Wang Y, Schalch J et al. Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers[J]. ACS Photonics, 6, 830-837(2019).

    [66] Han S, Cong L, Srivastava Y K et al. All-dielectric active terahertz photonics driven by bound states in the continuum[J]. Advanced Materials, 31, e1901921(2019).

    [67] Fan K B, Shadrivov I V, Padilla W J. Dynamic bound states in the continuum[J]. Optica, 6, 169-173(2019).

    [68] Cong L Q, Singh R. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams[J]. Advanced Materials, 32, 2001418(2020).

    [69] Shcherbakov M R, Liu S, Zubyuk V V et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces[J]. Nature Communications, 8, 17(2017).

    [70] Chen H T, Padilla W J, Zide J M et al. Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices[J]. Optics Letters, 32, 1620-1622(2007).

    [71] Fekete L, Kadlec F, Němec H et al. Fast one-dimensional photonic crystal modulators for the terahertz range[J]. Optics Express, 15, 8898-8912(2007).

    [72] Baig S A, Boland J L, Damry D A et al. An ultrafast switchable terahertz polarization modulator based on III-V semiconductor nanowires[J]. Nano Letters, 17, 2603-2610(2017).

    [73] Grinblat G, Berté R, Nielsen M P et al. Sub-20 fs all-optical switching in a single Au-clad Si nanodisk[J]. Nano Letters, 18, 7896-7900(2018).

    [74] Lim W X, Manjappa M, Srivastava Y K et al. Ultrafast all-optical switching of germanium-based flexible metaphotonic devices[J]. Advanced Materials, 30, 1705331(2018).

    [75] Hu Y Z, Jiang T, Zhou J H et al. Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices[J]. Nano Energy, 68, 104280(2020).

    [76] Hu Y Z, Tong M Y, Cheng X G et al. Bi2Se3-functionalized metasurfaces for ultrafast all-optical switching and efficient modulation of terahertz waves[J]. ACS Photonics, 8, 771-780(2021).

    [77] Kleine-Ostmann T, Dawson P, Pierz K et al. Room-temperature operation of an electrically driven terahertz modulator[J]. Applied Physics Letters, 84, 3555-3557(2004).

    [78] Chen H T, Padilla W J, Zide J M et al. Active terahertz metamaterial devices[J]. Nature, 444, 597-600(2006).

    [79] Chen H T, Padilla W J, Cich M J et al. A metamaterial solid-state terahertz phase modulator[J]. Nature Photonics, 3, 148-151(2009).

    [80] Chan W L, Chen H T, Taylor A J et al. A spatial light modulator for terahertz beams[J]. Applied Physics Letters, 94, 213511(2009).

    [81] Zhang Y X, Qiao S, Liang S X et al. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure[J]. Nano Letters, 15, 3501-3506(2015).

    [82] Chen H T, Palit S, Tyler T et al. Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves[J]. Applied Physics Letters, 93, 091117(2008).

    [83] Shrekenhamer D, Rout S, Strikwerda A C et al. High speed terahertz modulation from metamaterials with embedded high electron mobility transistors[J]. Optics Express, 19, 9968-9975(2011).

    [84] Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 4, 611-622(2010).

    [85] Sensale-Rodríguez B, Yan R S, Liu L et al. Graphene for reconfigurable terahertz optoelectronics[J]. Proceedings of the IEEE, 101, 1705-1716(2013).

    [86] Tassin P, Koschny T, Soukoulis C M. Graphene for terahertz applications[J]. Science, 341, 620-621(2013).

    [87] Sensale-Rodriguez B, Yan R S, Kelly M M et al. Broadband graphene terahertz modulators enabled by intraband transitions[J]. Nature Communications, 3, 1-7(2012).

    [88] Shi S F, Zeng B, Han H L et al. Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures[J]. Nano Letters, 15, 372-377(2015).

    [89] Li Q, Tian Z, Zhang X et al. Active graphene-silicon hybrid diode for terahertz waves[J]. Nature Communications, 6, 7082(2015).

    [90] Chen Z, Chen X, Tao L et al. Graphene controlled Brewster angle device for ultra broadband terahertz modulation[J]. Nature Communications, 9, 4909(2018).

    [91] Ju L, Geng B, Horng J et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 6, 630-634(2011).

    [92] Balci O, Kakenov N, Karademir E et al. Electrically switchable metadevices via graphene[J]. Science Advances, 4, eaao1749(2018).

    [93] Li Q, Tian Z, Zhang X Q et al. Dual control of active graphene-silicon hybrid metamaterial devices[J]. Carbon, 90, 146-153(2015).

    [94] Li Q, Cong L Q, Singh R et al. Monolayer graphene sensing enabled by the strong Fano-resonant metasurface[J]. Nanoscale, 8, 17278-17284(2016).

    [95] Valmorra F, Scalari G, Maissen C et al. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial[J]. Nano Letters, 13, 3193-3198(2013).

    [96] Lee S H, Choi M, Kim T T et al. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nature Materials, 11, 936-941(2012).

    [97] Zeng B, Huang Z, Singh A et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging[J]. Light: Science & Applications, 7, 51(2018).

    [98] Nikolaenko A E, Papasimakis N, Atmatzakis E et al. Nonlinear graphene metamaterial[J]. Applied Physics Letters, 100, 181109(2012).

    [99] Driscoll T, Kim H T, Chae B G et al. Memory metamaterials[J]. Science, 325, 1518-1521(2009).

    [100] Wang Q, Rogers E T F, Gholipour B et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 10, 60-65(2016).

    [101] Wuttig M, Bhaskaran H, Taubner T. Phase-change materials for non-volatile photonic applications[J]. Nature Photonics, 11, 465-476(2017).

    [102] Liu M, Hwang H Y, Tao H et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial[J]. Nature, 487, 345-348(2012).

    [103] Hu Y Z, Tong M Y, Xu Z J et al. Spatiotemporal metasurfaces: spatiotemporal terahertz metasurfaces for ultrafast all-optical switching with electric-triggered bistability[J]. Laser & Photonics Reviews, 15, 2170018(2021).

    [104] Pitchappa P, Kumar A, Prakash S et al. Chalcogenide phase change material for active terahertz photonics[J]. Advanced Materials, 31, e1808157(2019).

    [105] Chen H T, Yang H, Singh R et al. Tuning the resonance in high-temperature superconducting terahertz metamaterials[J]. Physical Review Letters, 105, 247402(2010).

    [106] Gu J Q, Singh R, Tian Z et al. Terahertz superconductor metamaterial[J]. Applied Physics Letters, 97, 071102(2010).

    [107] Srivastava Y K, Manjappa M, Cong L Q et al. Ultrahigh-Q Fano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry[J]. Advanced Optical Materials, 4, 457-463(2016).

    [108] Singh R, Tian Z, Han J G et al. Cryogenic temperatures as a path toward high-Q terahertz metamaterials[J]. Applied Physics Letters, 96, 071114(2010).

    [109] Srivastava Y K, Manjappa M, Cong L et al. A superconducting dual-channel photonic switch[J]. Advanced Materials, e1801257(2018).

    [110] Ciracì C, Poutrina E, Scalora M et al. Origin of second-harmonic generation enhancement in optical split-ring resonators[J]. Physical Review B, 85, 201403(2012).

    [111] Luo L, Chatzakis I, Wang J G et al. Broadband terahertz generation from metamaterials[J]. Nature Communications, 5, 3055(2014).

    [112] Keren-Zur S, Tal M, Fleischer S et al. Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces[J]. Nature Communications, 10, 1778(2019).

    [113] McDonnell C, Deng J H, Sideris S et al. Functional THz emitters based on Pancharatnam-Berry phase nonlinear metasurfaces[J]. Nature Communications, 12, 30(2021).

    [114] Alam M Z, Schulz S A, Upham J et al. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material[J]. Nature Photonics, 12, 79-83(2018).

    [115] Nicholls L H, Rodríguez-Fortuño F J, Nasir M E et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials[J]. Nature Photonics, 11, 628-633(2017).

    [116] Seren H R, Zhang J, Keiser G R et al. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials[J]. Light: Science & Applications, 5, e16078(2016).

    [117] Zhang X G, Jiang W X, Jiang H L et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 3, 165-171(2020).

    [118] Venkatesh S, Lu X Y, Saeidi H et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips[J]. Nature Electronics, 3, 785-793(2020).

    [119] Duan X Y, Kamin S, Liu N. Dynamic plasmonic colour display[J]. Nature Communications, 8, 1-9(2017).

    [120] Cui T J, Qi M Q, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 3, e218(2014).

    [121] Li J X, Kamin S, Zheng G X et al. Addressable metasurfaces for dynamic holography and optical information encryption[J]. Science Advances, 4, eaar6768(2018).

    [122] Dey S, Fan C H, Gothelf K V et al. DNA origami[J]. Nature Reviews Methods Primers, 1, 1-24(2021).

    [123] Zhou C, Duan X Y, Liu N. A plasmonic nanorod that walks on DNA origami[J]. Nature Communications, 6, 8102(2015).

    [124] Liu N, Liedl T. DNA-assembled advanced plasmonic architectures[J]. Chemical Reviews, 118, 3032-3053(2018).