• Opto-Electronic Engineering
  • Vol. 44, Issue 1, 64 (2017)
Xiangfan Xu1、2、* and Baowen Li1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.01.005.1 Cite this Article
    Xiangfan Xu, Baowen Li. Transformation thermotics and the manipulation of thermal energy[J]. Opto-Electronic Engineering, 2017, 44(1): 64 Copy Citation Text show less
    References

    [1] Shen Xiangying, Huang Jiping. Research progress in thermal metamaterials[J]. Physics, 2013, 42(3): 170-180.

    [2] Xu Xiangfan, Zhou Jun, Yang Nuo, et al. Artificial microstructure materials and heat flux manipulation[J]. Scientia Sinica Technologica, 2015, 45(7): 705-713.

    [3] Leonhardt U. Optical conformal mapping[J]. Science, 2006, 312(5781): 1777-1780.

    [4] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782.

    [5] Schittny R, Kadic M, Guenneau S, et al. Experiments on transformation thermodynamics: molding the flow of heat[J]. Physical Review Letters, 2013, 110(19): 195901.

    [6] Narayana S, Sato Y. Heat flux manipulation with engineered thermal materials[J]. Physical Review Letters, 2012, 108(21): 214303.

    [7] Han Tiangcheng, Bai Xue, Gao Dongliang, et al. Experimental demonstration of a bilayer thermal cloak[J]. Physical Review Letters, 2014, 112(5): 054302.

    [8] Xu Hongyi, Shi Xihang, Gao Fei, et al. Ultrathin three-dimen-sional thermal cloak[J]. Physical Review Letters, 2014, 112(5): 054301.

    [9] Alù A. Thermal cloaks get hot[J]. Physics, 2014, 7: 12.

    [10] Han Tiancheng, Bai Xue, Thong J T L, et al. Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials[J]. Advanced Materials, 2014, 26(11): 1731-1734.

    [11] Li Baowen, Lan Jinghua, Wang Lei. Interface thermal resis-tance between dissimilar anharmonic lattices[J]. Physical Review Letters, 2005, 95(10): 104302.

    [12] Li Baowen, Wang Lei, Casati G. Thermal diode: rectification of heat flux[J]. Physical Review Letters, 2004, 93(18): 184301.

    [13] Terraneo M, Peyrard M, Casati G. Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier[J]. Physical Review Letters, 2002, 88(9): 094302.

    [14] Wang Lei, Li Baowen. Thermal logic gates: computation with phonons[J]. Physical Review Letters, 2007, 99(17): 177208.

    [15] Wang Lei, Li Baowen. Thermal memory: a storage of phononic information[J]. Physical Review Letters, 2008, 101(26): 267203.

    [16] Li Nianbei, Ren Jie, Wang Lei, et al. Colloquium: phononics: manipulating heat flow with electronic analogs and beyond[J]. Reviews of Modern Physics, 2012, 84(3): 1045-1066.

    [17] Han Tiancheng, Yuan Tao, Li Baowen, et al. Homogeneous thermal cloak with constant conductivity and tunable heat localization[J]. Scientific Reports, 2013, 3: 1593.

    [18] Han Tiancheng, Zhao Jiajun, Yuan Tao, et al. Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials[J]. Energy & Environmental Science, 2013, 6(12): 3537-3541.

    [19] Kadic M, Bückmann T, Schittny R, et al. Metamaterials beyond electromagnetism[J]. Reports on Progress in Physics, 2013, 76(12): 126501.

    [20] Moccia M, Castaldi G, Savo S, et al. Independent manipulation of heat and electrical current via bifunctional metamaterials[J]. Physical Review X, 2014, 4(2): 021025.

    [21] Ma Yungui, Liu Yichao, Raza M, et al. Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously[J]. Physical Review Letters, 2014, 113(20): 205501.

    [22] Li Ying, Shen Xiangying, Wu Zuhui, et al. Tempera-ture-depen-dent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes[J]. Physical Review Letters, 2015, 115(19): 195503.

    Xiangfan Xu, Baowen Li. Transformation thermotics and the manipulation of thermal energy[J]. Opto-Electronic Engineering, 2017, 44(1): 64
    Download Citation