[1] Mareev E, Pushkin A, Migal E, Lvov K, Stremoukhov S, Potemkin F. Single-shot femtosecond bulk micromachining of silicon with mid-IR tightly focused beams. Sci Rep. 2022;12:7517.
[2] Betti R, Hurricane OA. Inertial-confinement fusion with lasers. Nat Phys. 2016;12:435.
[3] Solli DR, Ropers C, Koonath P, Jalali B. Optical rogue waves. Nature. 2007;450:1054–1057.
[7] Wang D, Wei S, Yuan X, Liu Z, Weng Y, Zhou Y, Xiao T, Goda K, Liu S, Lei C. Ultrafast imaging for uncovering laser–material interaction dynamics. Int J Mech Syst Dyn. 2022;2(1):65–81.
[9] Chen H. Toward unlimited temporal resolution: Femtosecond videography for atomic and molecular dynamics. Light Sci Appl. 2017;6:e17123.
[10] Thompson JV, Bixler JN, Hokr BH, Noojin GD, Scully MO, Yakovlev VV. Single-shot chemical detection and identification with compressed hyperspectral Raman imaging. Opt Lett. 2017;42:2169.
[12] Suzuki T, Hida R, Yamaguchi Y, Nakagawa K, Saiki T, Kannari F. Single-shot 25-frame burst imaging of ultrafast phase transition of Ge2Sb2Te5 with a sub-picosecond resolution. Appl Phys Express. 2017;10:092502.
[13] Dempsey D, Nagar GC, Renskers CK, Grynko RI, Sutherland JS, Shim B. Single-shot ultrafast visualization and measurement of laser–matter interactions in flexible glass using frequency domain holography. Opt Lett. 2020;45:1252.
[14] Itina TE, Zakoldaev RA, Sergeev MM, Ma HF, Kudryashov SI, Medvedev OS, Veiko VP. Ultra-short laser-induced high aspect ratio densification in porous glass. Opt Mater Express. 2019;9:4379–4389.
[15] Mareev EI, Rumiantsev BV, Migal EA, Bychkov AS, Karabutov AA, Cherepetskaya EB, Makarov VA, Potemki FV. A comprehensive approach to the characterization of the deposited energy density during laser–matter interactions in liquids and solid Meas. Sci Technol. 2020;31:085204.
[17] Fieramonti L, Bassi A, Foglia EA, Pistocchi A, D’Andrea C, Valentini G, Cubeddu R, De Silvestri S, Cerullo G, Cotelli F. Time-gated optical projection tomography allows visualization of adult zebrafish internal structures. PLOS ONE. 2012;7:e50744.
[19] Fuller PWW. An introduction to high-speed photography and photonics. Imaging Sci J. 2009;57(6):293–302.
[21] Zewail AH. Four-dimensional electron microscopy. Science. 2010;328:187–193.
[25] Liang J, Wang LV. Single-shot ultrafast optical imaging. Optica. 2018;5(9):1113–1127.
[28] Boyle WS, Smith GE. Charge coupled semiconductor devices. Bell Syst Tech J. 1970;49:587–593.
[30] Wong TTW, Lau AKS, Ho KKY, Tang MYH, Joseph DF, Robles XW, Chan ACS, Tang AHL, Lam EY, Wong KKY, et al. Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow. Sci Rep. 2014;4:3656.
[31] Wakeham GP, Nelson KA. Dual-echelon single-shot femtosecond spectroscopy. Opt Lett. 2000;25:505–507.
[33] Zeng X, Zheng S, Cai Y, Lin Q, Liang J, Lu X, Li J, Xie W, Xu S. High-spatial-resolution ultrafast framing imaging at 15 trillion frames per second by optical parametric amplification. Adv. Photonics. 2020;2(5):056002.
[35] Offroy M, Roggo Y, Milanfar P, Duponchel L. Infrared chemical imaging: Spatial resolution evaluation and super-resolution concept. Anal Chim Acta. 2010;674:220.
[39] Ding P, Jin C, Wu X, Deng L, Jia T, Huang F, Liang J, Sun Z, Zhang S. Single-shot real-time ultrafast imaging of femtosecond laser fabrication. ACS Photonics. 2021;8:738–744.
[40] Rulliere C. Femtosecond laser pulses principles and experimentsSpringer Science; 2005.
[41] Zeng X, Zheng S, Cai Y, Wang H, Lu X, Wang H, Li J, Xie W, Xu S. Generation and imaging of a tunable ultrafast intensity-rotating optical field. High Power Laser Sci Eng. 2020;8:e3.
[44] Li Z, Zgadzaj R, Wang X, Reed S, Dong P, Downer MC. Frequency-domain streak camera for ultrafast imaging of evolving light-velocity objects. Opt Lett. 2010;35:4087–4089.
[45] Matlis N, Reed S, Bulanov S, Chvykov V, Kalintchenko G, Matsuoka T, Rousseau P, Yanovsky V, Maksimchuk A, Kalmykov S, et al. Snapshots of laser wakefields. Nat Phys. 2006;2:749–753.
[47] Jing JC, Wei X, Wang LV. Spatio-temporal-spectral imaging of non-repeatable dissipative soliton dynamics. Nat Commun. 2020;11:2059.
[48] Suzuki T, Isa F, Fujii L, Hirosawa K, Nakagawa K, Goda K, Sakuma I, Kannari F. Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering. Opt Express. 2015;23:30512–30522.
[49] Gao G, Tian J, Wang T, He K, Zhang C, Zhang J, Chen S, Jia H, Yuan F, Liang L, et al. Ultrafast all-optical imaging technique using low-temperature grown GaAs/AlxGa1−xAs multiple-quantum-well semiconductor. Phys Lett. 2017;381:3594–3598.
[51] Ehn A, Bood J, Li Z, Berrocal E, Aldén M, Kristensson E. FRAME: Femtosecond videography for atomic and molecular dynamics. Light Sci Appl. 2017;6:e17045.
[52] Baker KL, Stewart RE, Steele PT, Vernon SP, Hsing WW, Remington BA. Solid-state framing camera with multiple time frames. Appl Phys Lett. 2013;103:151111.
[54] Xu YM, Pan XC, Sun MY, Liu WF, Liu C, Zhu JQ. Single-shot ultrafast multiplexed coherent diffraction imaging. Photonics Res. 2022;10:1937–1946.
[55] Davis WC. A high-speed rotating-mirror framing camera. Appl Opt. 1962;1:407.
[56] Racca RG, Dewey JM. High speed time-resolved holographic interferometer using solid-state shutters. Opt Laser Technol. 1990;22:199–204.
[57] Chen GH, Li JF, Peng QX, Liu SX, Liu J. All-optical coaxial framing photography using parallel coherence shutters. Opt Lett. 2017;42:415–418.
[58] Abramson N. Light-in-flight recording by holography. Opt Lett. 1978;3:121–123.
[59] Kubota T, Komai K, Yamagiwa M, Awatsuji Y. Moving picture recording and observation of three-dimensional image of femtosecond light pulse propagation. Opt Express. 2007;15:14348–14354.
[60] Rabal H, Pomarico J, Arizaga R. Light-in-flight digital holography display. Appl Opt. 1994;33:4358–4360.
[62] Sawashima Y, Yamanaka D, Takamoto I, Matsunaka A, Awatsuji Y, Nishio K. Extending recordable time of light-in-flight recording by holography with double reference light pulses. Opt Lett. 2018;43:5146–5149.
[63] Sasaki M, Matsunaka A, Inoue T, Nishio K, Awatsuji Y. Motion-picture recording of ultrafast behavior of polarized light incident at Brewster’s angle. Sci Rep. 2020;10(1):7638.
[64] Hinrichs H, Hinsch KD, Kickstein J, Böhmer M. Light-in-flight holography for visualization and velocimetry in three-dimensional flows. Opt Lett. 1997;22:828–830.
[65] Sven FH, Klaus DH. Light-in-flight holographic particle image velocimetry for wind-tunnel applications. Meas Sci Technol. 2004;15(4):613.
[66] Fujimoto M, Aoshima S, Tsuchiya Y. Multiframe observation of an intense femtosecond optical pulse propagating in air. Opt Lett. 2002;27:309–311.
[67] Yan L, Wang X, Si J, Matsuo S, Chen T, Tan W, Chen F, Hou X. Time-resolved single-shot imaging of femtosecond laser induced filaments using supercontinuum and optical polarigraphy. Appl Phys Lett. 2012;100:111107.
[68] Huang K, Fang J, Yan M, Wu E, Zeng H. Wide-field mid-infrared single-photon upconversion imaging. Nat Commun. 2022;13(1):1077.
[69] Huang K, Wang Y, Fang J, Kang W, Sun Y, Liang Y, Hao Q, Yan M, Zeng H. Mid-infrared photon counting and resolving via efficient frequency up-conversion. Photonics Res. 2021;9(2):259–265.
[70] Scott RHH, Glize K, Antonelli L, Khan M, Theobald W, Wei M, Betti R, Stoeckl C, Seaton AG, Arber TD, et al. Shock ignition laser-plasma interactions in ignition-scale plasmas. Phys Rev Lett. 2021;127:065001.
[71] Lei S, Zhao X, Yu X, Hu A, Vukelic S, Jun MBG, Joe H, Yao YL, Shin YC. Ultrafast laser applications in manufacturing processes: A state-of-the-art review. ASME J Manuf Sci Eng. 2020;142(3):031005.
[73] Wang X, Zhai H, Mu G. Pulsed digital holography system recording ultrafast process of the femtosecond order. Opt Lett. 2006;31:1636–1638.
[74] Yeola S, Kuk D, Kim K-Y. Single-shot ultrafast imaging via spatiotemporal division of femtosecond laser pulses. J Opt Soc Am B. 2018;35:2822–2827.
[77] Zhu Q, Cai Y, Zeng X, Long H, Chen H, Zeng L, Zhu Y, Lu X, Li J. FISI: Frequency domain integration sequential imaging at 1.26×1013 frames per second and 108 lines per millimeter. Opt Express. 2022;30:27429–27438.
[78] Zhang N, Zhu XN, Yang JJ, Wang XL, Wang MW. Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum. Phys Rev Lett. 2007;99:167602–167604.
[80] Huang HY, Cheng ZJ, Yang Y, Yue QY, Guo CS. Single-shot ultrafast sequential holographic imaging with high temporal resolution and a large field of view. Opt Lett. 2019;44:4885.
[81] Liu Z, Centurion M, Panotopoulos G, Hong J, Psaltis D. Holographic recording of fast events on a CCD camera. Opt Lett. 2002;27:22–24.
[82] Sánchez-Ortiga E, Doblas A, Saavedra G, Martínez-Corral M, Garcia-Sucerquia J. Off-axis digital holographic microscopy: Practical design parameters for operating at diffraction limit. Appl Opt. 2014;53:2058.
[83] Zhang C, Xu YQ, Wei XM, Tsia KK, Wong KKY. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source. Appl Phys Lett. 2014;105:041113.
[85] Kalashnikov MP, Risse E, Schönnagel H, Sandner W. Double chirped-pulse-amplification laser: A way to clean pulses temporally. Opt Lett. 2005;30:923–925.
[86] Kojima J, Nguyen Q-V. Laser pulse-stretching with multiple optical ring cavities. Appl Opt. 2002;41:6360.
[89] Nemoto H, Suzuki T, Kannari F. Single-shot ultrafast burst imaging using an integral field spectroscope with a microlens array. Opt Lett. 2020;45:5004.
[90] Saiki T, Hosobata T, Kono Y, Takeda M, Ishijima A, Tamamitsu M, Kitagawa Y, Goda K, Morita SY, Ozaki S, et al. Sequentially timed all-optical mapping photography boosted by a branched 4f system with a slicing mirror. Opt Express. 2020;28(21):31914–31922.
[91] Yuan X, Li Z, Zhou J, Liu S, Wang D, Lei C. Hybrid-plane spectrum slicing for sequentially timed all-optical mapping photography. Opt Lett. 2022;47(18):4822.
[92] Touil M, Idlahcen S, Becheker R, Lebrun D, Rozé C, Hideur A, Godin T. Acousto-optically driven lensless single-shot ultrafast optical imaging. Light Sci Appl. 2022;11:66.
[94] Wu JL, Xu YQ, Xu JJ, Wei XM, Chan AC, Tang AH, Lau AK, Chung BM, Shum HC, Lam EY, et al. Ultrafast laser-scanning time-stretch imaging at visible wavelengths. Light Sci Appl. 2017;6:e16196.
[95] Xu YQ, Murdoch SG. Real-time spectral analysis of ultrafast pulses using a free-space angular chirp-enhanced delay. Opt Lett. 2019;44:3697–3700.
[96] Zhu Y, Zeng X, Cai Y, Lu X, Zhu Q, Zeng L, He T, Li J, Yang Y, Zheng M, et al. All-optical high spatial-temporal resolution photography with raster principle at 2 trillion frames per second. Opt Express. 2021;29(17):27298–27308.
[97] Li Z, Zgadzaj R, Wang X, Chang Y-Y, Downer MC. Single-shot tomographic movies of evolving light-velocity objects. Nat Commun. 2014;5:3085.
[99] Yuan X, Brady DJ, Katsaggelos AK. Snapshot compressive imaging: Theory, algorithms, and applications. IEEE Signal Process Mag. 2021;38:65–88.
[100] Wang P, Liang J, Wang L. Single-shot ultrafast imaging attaining 70 trillion frames per second. Nat Commun. 2020;11:2091.
[103] Yang C, Qi D, Cao F, He Y, Yao J, Ding P, Ouyang X, Yu Y, Jia T, Xu S, et al. Single-shot receive-only ultrafast electro-optical deflection imaging. Phys Rev Appl. 2020;13:024001.
[104] Lu Y, Wong TW, Chen F, Wang L. Compressed ultrafast spectral-temporal photograpy. Phys Rev Lett. 2019;122:193904.
[106] Gao G, He K, Tian J, Zhang C, Zhang J, Wang T, Chen S, Jia H, Yuan F, Liang L, et al. Ultrafast all-optical solid-state framing camera with picosecond temporal resolution. Opt Express. 2017;25(8):8721–8729.
[107] Mait JN, Euliss GW, Athale RA. Computational imaging. Adv Opt Photon. 2018;10:409–483.
[108] Li JY, Zhao L, Wu XQ, Liu F, Wei YZ, Yu C, Shao XP. Computational optical system design: A global optimization method in a simplified imaging system. Appl Opt. 2022;61:5916–5925.
[109] Kubala K, Dowski E, Cathey WT. Reducing complexity in computational imaging systems. Opt Express. 2003;11:2102–2108.
[111] Cossairt OS, Gupta M, Nayar SK. When does computational imaging improve performance? IEEE Trans Image Process. 2013;22:447–458.
[113] Mochizuki F, Kagawa K, Okihara SI, Seo MW, Zhang B, Takasawa T, Yasutomi K, Kawahito S. Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor. Opt Express. 2016;24(4):4155–4176.
[114] Matlis NH, Axley A, Leemans WP. Single-shot ultrafast tomographic imaging by spectral multiplexing. Nat Commun. 2012;3:1111.
[115] Fienup JR. Phase retrieval algorithms: A comparison. Appl Opt. 1982;21:2758–2769.
[119] Rodenburg JM, Faulkner HML. A phase retrieval algorithm for shifting illumination. Appl Phys Lett. 2004;85(20):4795–4797.
[122] Gerchberg R, Saxton W. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik. 1972;35:227–246.
[125] Sidorenko P, Cohen O. Single-shot ptychography. Optica. 2016;3(1):9.
[127] Zhang F, Chen B, Morrison GR, Vila-Comamala J, GuizarSicairos M, Robinson IK. Phase retrieval by coherent modulation imaging. Nat Commun. 2016;7:13367.
[129] Donoho DL. Compressed sensing. IEEE T Inform Theory. 2006;52(4):289–1306.
[130] Yin F, Meng YZ, Yang Q, Kai L, Liu Y, Hou X, Lu Y, Chen F. High precision reconstruction for compressed femtosecond dynamics images based on the TVAL3 algorithm. Opt. Mater. Express. 2022;12(11):4435–4443.
[131] Jin C, Qi D, Yao J, He Y, Ding P, Guo Z, Huang Z, He Y, Yao Y, Wang Z, et al. Weighted multi-scale denoising via adaptive multi-channel fusion for compressed ultrafast photography. Opt Express. 2022;30:31157–31170.
[132] Haocheng T, Ting M, Xianglei L, Yaodan H, Jingqin S, Yanlei Z, Ping L, Jinyang L, Downer MC, Zhengyan L. Single-shot compressed optical field topography. Light Sci Appl. 2022;11:244.
[134] Herman GT. Fundamentals of computerized tomography: Image reconstruction from projections. 2nd ed. London: Springer; 2009.
[136] Feist A, Rubiano da Silva N, Liang W, Ropers C, Schäfer S. Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy. Struct Dyn. 2018;5:014302.
[137] Geohegan DB, Puretzky AA, Duscher G, Pennycook SJ. Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation. Appl Phys Lett. 1998;72:2987.
[139] Zeng X, Wang C, Cai Y, Lin Q, Lu X, Lin J, Yuan X, Cao W, Ai Y, Xu S. High spatial-resolution biological tissue imaging in the second near-infrared region via optical parametric amplification pumped by an ultrafast vortex pulse. Chin Opt Lett. 2022;20(10):100003.
[140] Qiu X, Li F, Zhang W, Zhu Z, Chen L. Spiral phase contrast imaging in nonlinear optics: Seeing phase objects using invisible illumination. Optica. 2018;5(2):208–212.
[142] Liang J, Wang P, Zhu L, Wang LV. Single-shot stereo-polarimetric compressed ultrafast photography for light-speed observation of high-dimensional optical transients with picosecond resolution. Nat Commun. 2020;11(1):5252.
[143] Chong TC, Hong MH, Shi LP. Laser precision engineering: From microfabrication to nanoprocessing. Laser Photonics Rev. 2010;4:123–143.
[144] Sugioka K. Hybrid femtosecond laser three-dimensional micro- and nanoprocessing: A review. Int J Extrem Manuf. 2019;1(1): Article 012003.
[145] Chen H, He X, Qing L, Wu Y, Ren C, Sheriff RE, Zhu C. Real-world single image super-resolution: A brief review. Inform Fusion. 2022;79:124–145.
[146] Li X, Cao G, Zhang Y, Shafique A, Fu P. Combining synthesis sparse with analysis sparse for single image super-resolution. Signal Process Image Commun. 2020;83: Article 115805.
[147] Zhang K, Wang Z, Li J, Gao X, Xiong Z. Learning recurrent residual regressors for single image super-resolution. Signal Process. 2019;154:324–337.
[151] Ding P, Yao Y, Qi D, Yang C, Cao F, He Y, Yao J, Jin C, Huang Z, Deng L, et al. Single-shot spectral-volumetric compressed ultrafast photography. Adv Photon. 2021;3(4): Article 045001.
[152] Li J, Lu J, Chew A, Han S, Li J, Wu Y, Wang H, Ghimire S, Chang Z. Attosecond science based on high harmonic generation from gases and solids. Nat Commun. 2020;11: Article 2748.
[153] Yang Y, Mainz RE, Rossi GM, Scheiba F, Silva-Toledo MA, Keathley PD, Cirmi G, Kärtner FX. Strong-field coherent control of isolated attosecond pulse generation. Nat Commun. 2021;12: Article 6641.
[154] Pushkin A, Migal E, Suleimanova D, Mareev E, Potemkin F. High-power solid-state near- and Mid-IR ultrafast laser sources for strong-field science. Photo-Dermatology. 2022;9(2):90.
[155] Dhillon S. Mid-infrared ultrashort pulse generation. Nat Photon. 2021;15:869–870.
[156] Liao G-Q, Liu H, Scott GG, Zhang Y-H, Zhu B-J, Zhang Z, Li Y-T, Armstrong C, Zemaityte E, Bradford P, et al. Towards terawatt-scale spectrally tunable terahertz pulses via relativistic laser-foil interactions. Phys Rev X. 2020;10(3): Article 031062.
[158] Haenlein M, Kaplan A. A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. Calif Manag Rev. 2019;61(4):5–14.
[159] Ma YY, Feng XH, Gao L. Deep-learning-based image reconstruction for compressed ultrafast photography. Opt Lett. 2020;45(16):4400–4403.
[163] Hu HM, Ji BY, Song HB, Lang P, Lin JQ. Ultrafast spatiotemporal control of the femtosecond Bessel surface plasmon polariton by a chirped laser pulse. Optics Commun. 2023;526: Article 128910.
[164] Makwana M, Craster R, Guenneau S. Topological beam-splitting in photonic crystals. Opt Express. 2019;27(11):16088–16102.
[165] Chang H, Chang Q, Xi J, Hou T, Su R, Ma P, Wu J, Li C, Jiang M, et al. First experimental demonstration of coherent beam combining of more than 100 beams. Photon Res. 2020;8(12):1943–1948.