• Ultrafast Science
  • Vol. 3, Issue 1, 0020 (2023)
Xuanke Zeng、†, Xiaowei Lu、†, Congying Wang, Kaipeng Wu, Yi Cai*, Hongmei Zhong, Qinggang Lin, Jiahe Lin, Ruiwei Ye, and Shixiang Xu*
DOI: 10.34133/ultrafastscience.0020 Cite this Article
Xuanke Zeng, Xiaowei Lu, Congying Wang, Kaipeng Wu, Yi Cai, Hongmei Zhong, Qinggang Lin, Jiahe Lin, Ruiwei Ye, Shixiang Xu. Review and Prospect of Single-Shot Ultrafast Optical Imaging by Active Detection[J]. Ultrafast Science, 2023, 3(1): 0020 Copy Citation Text show less
References

[1] Mareev E, Pushkin A, Migal E, Lvov K, Stremoukhov S, Potemkin F. Single-shot femtosecond bulk micromachining of silicon with mid-IR tightly focused beams. Sci Rep. 2022;12:7517.

[2] Betti R, Hurricane OA. Inertial-confinement fusion with lasers. Nat Phys. 2016;12:435.

[3] Solli DR, Ropers C, Koonath P, Jalali B. Optical rogue waves. Nature. 2007;450:1054–1057.

[4] Hockett P, Bisgaard C, Clarkin O, Stolow A. Time resolved imaging of purely valence electron dynamics during a chemical reaction. Nat Phys. 2011;7:612–615.

[5] Wong C, Alvey R, Turner D, Wilk KE, Bryant DA, Curmi PMG, Silbey RJ, Scholes GD. Eletronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting. Nat Chem. 2012;4(5):396–404.

[6] Herink G, Kurtz F, Jalali B, Solli DR, Ropers C. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science. 2017;356:50–54.

[7] Wang D, Wei S, Yuan X, Liu Z, Weng Y, Zhou Y, Xiao T, Goda K, Liu S, Lei C. Ultrafast imaging for uncovering laser–material interaction dynamics. Int J Mech Syst Dyn. 2022;2(1):65–81.

[8] Deng X, Chao A, Feikes J, Hoehl A, Huang W, Klein R, Kruschinski A, Li J, Matveenko A, Petenev Y, et al. Experimental demonstration of the mechanism of steady-state microbunching. Nature. 2021;590:576–579.

[9] Chen H. Toward unlimited temporal resolution: Femtosecond videography for atomic and molecular dynamics. Light Sci Appl. 2017;6:e17123.

[10] Thompson JV, Bixler JN, Hokr BH, Noojin GD, Scully MO, Yakovlev VV. Single-shot chemical detection and identification with compressed hyperspectral Raman imaging. Opt Lett. 2017;42:2169.

[11] Zewail AH. Femtochemistry: Atomic-scale dynamics of the chemical bond. J Phys Chem A. 2000;104:5660–5694.

[12] Suzuki T, Hida R, Yamaguchi Y, Nakagawa K, Saiki T, Kannari F. Single-shot 25-frame burst imaging of ultrafast phase transition of Ge2Sb2Te5 with a sub-picosecond resolution. Appl Phys Express. 2017;10:092502.

[13] Dempsey D, Nagar GC, Renskers CK, Grynko RI, Sutherland JS, Shim B. Single-shot ultrafast visualization and measurement of laser–matter interactions in flexible glass using frequency domain holography. Opt Lett. 2020;45:1252.

[14] Itina TE, Zakoldaev RA, Sergeev MM, Ma HF, Kudryashov SI, Medvedev OS, Veiko VP. Ultra-short laser-induced high aspect ratio densification in porous glass. Opt Mater Express. 2019;9:4379–4389.

[15] Mareev EI, Rumiantsev BV, Migal EA, Bychkov AS, Karabutov AA, Cherepetskaya EB, Makarov VA, Potemki FV. A comprehensive approach to the characterization of the deposited energy density during laser–matter interactions in liquids and solid Meas. Sci Technol. 2020;31:085204.

[16] Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V, Buividas R, Juodkazis S. Ultrafast laser processing of materials: From science to industry. Light Sci Appl. 2016;5:e16133.

[17] Fieramonti L, Bassi A, Foglia EA, Pistocchi A, D’Andrea C, Valentini G, Cubeddu R, De Silvestri S, Cerullo G, Cotelli F. Time-gated optical projection tomography allows visualization of adult zebrafish internal structures. PLOS ONE. 2012;7:e50744.

[18] Chenu A, Scholes GD. Coherence in energy transfer and photosynthesis. Annu Rev Phys Chem. 2015;66:69–96.

[19] Fuller PWW. An introduction to high-speed photography and photonics. Imaging Sci J. 2009;57(6):293–302.

[20] Velten A, Willwacher T, Gupta O, Veeraraghavan A, Bawendi MG, Raskar R. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat Commun. 2012;3:745.

[21] Zewail AH. Four-dimensional electron microscopy. Science. 2010;328:187–193.

[22] Suret P, Koussaifi R, Tikan A, Evain C, Randoux S, Szwaj C, Bielawski S. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat Commun. 2016;7:13136.

[23] Poulin PR, Nelson KA. Irreversible organic crystalline chemistry monitored in real time. Science. 2006;313:1756.

[24] Ledingham KWD, McKenna P, Singhal RP. Applications for nuclear phenomena generated by ultra-intense lasers. Science. 2003;300(5622):1107–1111.

[25] Liang J, Wang LV. Single-shot ultrafast optical imaging. Optica. 2018;5(9):1113–1127.

[26] Gao L, Liang J, Li C, Wang LV. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature. 2014;516:74–77.

[27] Liu X, Liu J, Jiang C, Vetrone F, Liang J. Single-shot compressed optical-streaking ultra-high-speed photography. Opt Lett. 2019;44:1387–1390.

[28] Boyle WS, Smith GE. Charge coupled semiconductor devices. Bell Syst Tech J. 1970;49:587–593.

[29] Kakue T, Tosa K, Yuasa J, Tahara T, Awatsuji Y, Nishio K, Ura S, Kubota T. Digital light-in-flight recording by holography by use of a femtosecond pulsed laser. IEEE J Sel Top Quantum Electron. 2012;18:479–485.

[30] Wong TTW, Lau AKS, Ho KKY, Tang MYH, Joseph DF, Robles XW, Chan ACS, Tang AHL, Lam EY, Wong KKY, et al. Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow. Sci Rep. 2014;4:3656.

[31] Wakeham GP, Nelson KA. Dual-echelon single-shot femtosecond spectroscopy. Opt Lett. 2000;25:505–507.

[32] Yue Q, Cheng Z, Han L, Yang Y, Guo C. One-shot time-resolved holographic polarization microscopy for imaging laser induced ultrafast phenomena. Opt Express. 2017;25:14182–14191.

[33] Zeng X, Zheng S, Cai Y, Lin Q, Liang J, Lu X, Li J, Xie W, Xu S. High-spatial-resolution ultrafast framing imaging at 15 trillion frames per second by optical parametric amplification. Adv. Photonics. 2020;2(5):056002.

[34] Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C. Overcoming the Rayleigh criterion limit with optical vortices. Phys Rev Lett. 2006;97:163903.

[35] Offroy M, Roggo Y, Milanfar P, Duponchel L. Infrared chemical imaging: Spatial resolution evaluation and super-resolution concept. Anal Chim Acta. 2010;674:220.

[36] Zhang K, Hu J, Yang W. Deep compressed imaging via optimized pattern scanning. Photonics Res. 2021;9:B57–B70.

[37] Lei X, Shahid H, Wu S. A novel algorithm to improve image reconstruction quality for 2D streak camera. Nucl Instrum Methods Phys Res A. 2021;991:165023.

[38] Mikami H, Gao L, Goda K. Ultrafast optical imaging technology: Principles and applications of emerging methods. Nanophotonics. 2016;5:497–509.

[39] Ding P, Jin C, Wu X, Deng L, Jia T, Huang F, Liang J, Sun Z, Zhang S. Single-shot real-time ultrafast imaging of femtosecond laser fabrication. ACS Photonics. 2021;8:738–744.

[40] Rulliere C. Femtosecond laser pulses principles and experimentsSpringer Science; 2005.

[41] Zeng X, Zheng S, Cai Y, Wang H, Lu X, Wang H, Li J, Xie W, Xu S. Generation and imaging of a tunable ultrafast intensity-rotating optical field. High Power Laser Sci Eng. 2020;8:e3.

[42] Wang X, Yan L, Si J, Matsuo S, Xu H, Hou X. High-frame-rate observation of single femtosecond laser pulse propagation in fused silica using an echelon and optical polarigraphy technique. Appl Opt. 2014;53:8395–8399.

[43] Shin T, Wolfson J, Teitelbaum S, Kandyla M, Nelson K. Dual echelon femtosecond single-shot spectroscopy. Rev Sci Instrum. 2014;85:083115.

[44] Li Z, Zgadzaj R, Wang X, Reed S, Dong P, Downer MC. Frequency-domain streak camera for ultrafast imaging of evolving light-velocity objects. Opt Lett. 2010;35:4087–4089.

[45] Matlis N, Reed S, Bulanov S, Chvykov V, Kalintchenko G, Matsuoka T, Rousseau P, Yanovsky V, Maksimchuk A, Kalmykov S, et al. Snapshots of laser wakefields. Nat Phys. 2006;2:749–753.

[46] Hu C, Du Z, Chen M, Yang S, Chen H. Single-shot ultrafast phase retrieval photography. Opt Lett. 2019;44:4419–4422.

[47] Jing JC, Wei X, Wang LV. Spatio-temporal-spectral imaging of non-repeatable dissipative soliton dynamics. Nat Commun. 2020;11:2059.

[48] Suzuki T, Isa F, Fujii L, Hirosawa K, Nakagawa K, Goda K, Sakuma I, Kannari F. Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering. Opt Express. 2015;23:30512–30522.

[49] Gao G, Tian J, Wang T, He K, Zhang C, Zhang J, Chen S, Jia H, Yuan F, Liang L, et al. Ultrafast all-optical imaging technique using low-temperature grown GaAs/AlxGa1−xAs multiple-quantum-well semiconductor. Phys Lett. 2017;381:3594–3598.

[50] Liang J. Punching holes in light: Recent progress in single-shot coded-aperture optical imaging. Rep Prog Phys. 2020;83:116101.

[51] Ehn A, Bood J, Li Z, Berrocal E, Aldén M, Kristensson E. FRAME: Femtosecond videography for atomic and molecular dynamics. Light Sci Appl. 2017;6:e17045.

[52] Baker KL, Stewart RE, Steele PT, Vernon SP, Hsing WW, Remington BA. Solid-state framing camera with multiple time frames. Appl Phys Lett. 2013;103:151111.

[53] Barolak J, Goldberger D, Squier J, Bellouard Y, Durfee C, Adams D. Wavelength-multiplexed single-shot ptychography. Ultramicroscopy. 2022;233:113418.

[54] Xu YM, Pan XC, Sun MY, Liu WF, Liu C, Zhu JQ. Single-shot ultrafast multiplexed coherent diffraction imaging. Photonics Res. 2022;10:1937–1946.

[55] Davis WC. A high-speed rotating-mirror framing camera. Appl Opt. 1962;1:407.

[56] Racca RG, Dewey JM. High speed time-resolved holographic interferometer using solid-state shutters. Opt Laser Technol. 1990;22:199–204.

[57] Chen GH, Li JF, Peng QX, Liu SX, Liu J. All-optical coaxial framing photography using parallel coherence shutters. Opt Lett. 2017;42:415–418.

[58] Abramson N. Light-in-flight recording by holography. Opt Lett. 1978;3:121–123.

[59] Kubota T, Komai K, Yamagiwa M, Awatsuji Y. Moving picture recording and observation of three-dimensional image of femtosecond light pulse propagation. Opt Express. 2007;15:14348–14354.

[60] Rabal H, Pomarico J, Arizaga R. Light-in-flight digital holography display. Appl Opt. 1994;33:4358–4360.

[61] Faccio D, Velten A. A trillion frames per second: The techniques and applications of light-in-flight photography. Rep Prog Phys. 2018;81:105901.

[62] Sawashima Y, Yamanaka D, Takamoto I, Matsunaka A, Awatsuji Y, Nishio K. Extending recordable time of light-in-flight recording by holography with double reference light pulses. Opt Lett. 2018;43:5146–5149.

[63] Sasaki M, Matsunaka A, Inoue T, Nishio K, Awatsuji Y. Motion-picture recording of ultrafast behavior of polarized light incident at Brewster’s angle. Sci Rep. 2020;10(1):7638.

[64] Hinrichs H, Hinsch KD, Kickstein J, Böhmer M. Light-in-flight holography for visualization and velocimetry in three-dimensional flows. Opt Lett. 1997;22:828–830.

[65] Sven FH, Klaus DH. Light-in-flight holographic particle image velocimetry for wind-tunnel applications. Meas Sci Technol. 2004;15(4):613.

[66] Fujimoto M, Aoshima S, Tsuchiya Y. Multiframe observation of an intense femtosecond optical pulse propagating in air. Opt Lett. 2002;27:309–311.

[67] Yan L, Wang X, Si J, Matsuo S, Chen T, Tan W, Chen F, Hou X. Time-resolved single-shot imaging of femtosecond laser induced filaments using supercontinuum and optical polarigraphy. Appl Phys Lett. 2012;100:111107.

[68] Huang K, Fang J, Yan M, Wu E, Zeng H. Wide-field mid-infrared single-photon upconversion imaging. Nat Commun. 2022;13(1):1077.

[69] Huang K, Wang Y, Fang J, Kang W, Sun Y, Liang Y, Hao Q, Yan M, Zeng H. Mid-infrared photon counting and resolving via efficient frequency up-conversion. Photonics Res. 2021;9(2):259–265.

[70] Scott RHH, Glize K, Antonelli L, Khan M, Theobald W, Wei M, Betti R, Stoeckl C, Seaton AG, Arber TD, et al. Shock ignition laser-plasma interactions in ignition-scale plasmas. Phys Rev Lett. 2021;127:065001.

[71] Lei S, Zhao X, Yu X, Hu A, Vukelic S, Jun MBG, Joe H, Yao YL, Shin YC. Ultrafast laser applications in manufacturing processes: A state-of-the-art review. ASME J Manuf Sci Eng. 2020;142(3):031005.

[72] Yan L, Wang X, Si J, He P, Chen F, Zou J, Hou X. Multi-frame observation of a single femtosecond laser pulse propagation using an echelon and optical polarigraphy technique. IEEE Photonics Tech Lett. 2013;25:1879–1881.

[73] Wang X, Zhai H, Mu G. Pulsed digital holography system recording ultrafast process of the femtosecond order. Opt Lett. 2006;31:1636–1638.

[74] Yeola S, Kuk D, Kim K-Y. Single-shot ultrafast imaging via spatiotemporal division of femtosecond laser pulses. J Opt Soc Am B. 2018;35:2822–2827.

[75] Huang HY, Guo CS. Simple system for realizing single-shot ultrafast sequential imaging based on spatial multiplexing in-line holography. Opt Express. 2022;30(23):41613–41623.

[76] Sheinman M, Erramilli S, Ziegler L, Hong MK, Mertz J. Flatfield ultrafast imaging with single-shot non-synchronous array photography. Opt Lett. 2022;47:577.

[77] Zhu Q, Cai Y, Zeng X, Long H, Chen H, Zeng L, Zhu Y, Lu X, Li J. FISI: Frequency domain integration sequential imaging at 1.26×1013 frames per second and 108 lines per millimeter. Opt Express. 2022;30:27429–27438.

[78] Zhang N, Zhu XN, Yang JJ, Wang XL, Wang MW. Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum. Phys Rev Lett. 2007;99:167602–167604.

[79] Moon J, Yoon S, Lim Y-S, Choi W. Single-shot imaging of microscopic dynamic scenes at 5 THz frame rates by time and spatial frequency multiplexing. Opt Express. 2020;28:4463.

[80] Huang HY, Cheng ZJ, Yang Y, Yue QY, Guo CS. Single-shot ultrafast sequential holographic imaging with high temporal resolution and a large field of view. Opt Lett. 2019;44:4885.

[81] Liu Z, Centurion M, Panotopoulos G, Hong J, Psaltis D. Holographic recording of fast events on a CCD camera. Opt Lett. 2002;27:22–24.

[82] Sánchez-Ortiga E, Doblas A, Saavedra G, Martínez-Corral M, Garcia-Sucerquia J. Off-axis digital holographic microscopy: Practical design parameters for operating at diffraction limit. Appl Opt. 2014;53:2058.

[83] Zhang C, Xu YQ, Wei XM, Tsia KK, Wong KKY. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source. Appl Phys Lett. 2014;105:041113.

[84] Cai Y, Chen ZK, Zeng XK, Shangguan HC, Lu XW, Song QY, Ai YX, Xu SX, Li JZ. The development of the temporal measurements for ultrashort laser pulses. Appl Sci. 2020;10:7401–7414.

[85] Kalashnikov MP, Risse E, Schönnagel H, Sandner W. Double chirped-pulse-amplification laser: A way to clean pulses temporally. Opt Lett. 2005;30:923–925.

[86] Kojima J, Nguyen Q-V. Laser pulse-stretching with multiple optical ring cavities. Appl Opt. 2002;41:6360.

[87] Nakagawa K, Iwasaki A, Oishi Y, Horisaki R, Tsukamoto A, Nakamura A, Hirosawa K, Liao H, Ushida T, Goda K, et al. Sequentially timed all-optical mapping photography (STAMP). Nat Photonics. 2014;8:695–700.

[88] Tamamitsu M, Nakagawa K, Horisaki R, Iwasaki A, Oishi Y, Tsukamoto A, Kannari F, Sakuma I, Goda K. Design for sequentially timed all-optical mapping photography with optimum temporal performance. Opt Lett. 2015;40(4):633–636.

[89] Nemoto H, Suzuki T, Kannari F. Single-shot ultrafast burst imaging using an integral field spectroscope with a microlens array. Opt Lett. 2020;45:5004.

[90] Saiki T, Hosobata T, Kono Y, Takeda M, Ishijima A, Tamamitsu M, Kitagawa Y, Goda K, Morita SY, Ozaki S, et al. Sequentially timed all-optical mapping photography boosted by a branched 4f system with a slicing mirror. Opt Express. 2020;28(21):31914–31922.

[91] Yuan X, Li Z, Zhou J, Liu S, Wang D, Lei C. Hybrid-plane spectrum slicing for sequentially timed all-optical mapping photography. Opt Lett. 2022;47(18):4822.

[92] Touil M, Idlahcen S, Becheker R, Lebrun D, Rozé C, Hideur A, Godin T. Acousto-optically driven lensless single-shot ultrafast optical imaging. Light Sci Appl. 2022;11:66.

[93] Nemoto H, Suzuki T, Kannari F. Extension of time window into nanoseconds in single-shot ultrafast burst imaging by spectrally sweeping pulses. Appl Opt. 2020;59:5210–5215.

[94] Wu JL, Xu YQ, Xu JJ, Wei XM, Chan AC, Tang AH, Lau AK, Chung BM, Shum HC, Lam EY, et al. Ultrafast laser-scanning time-stretch imaging at visible wavelengths. Light Sci Appl. 2017;6:e16196.

[95] Xu YQ, Murdoch SG. Real-time spectral analysis of ultrafast pulses using a free-space angular chirp-enhanced delay. Opt Lett. 2019;44:3697–3700.

[96] Zhu Y, Zeng X, Cai Y, Lu X, Zhu Q, Zeng L, He T, Li J, Yang Y, Zheng M, et al. All-optical high spatial-temporal resolution photography with raster principle at 2 trillion frames per second. Opt Express. 2021;29(17):27298–27308.

[97] Li Z, Zgadzaj R, Wang X, Chang Y-Y, Downer MC. Single-shot tomographic movies of evolving light-velocity objects. Nat Commun. 2014;5:3085.

[98] Gibson GM, Johnson SD, Padgett MJ. Single-pixel imaging 12 years on: A review. Opt Express. 2020;28:28190–28208.

[99] Yuan X, Brady DJ, Katsaggelos AK. Snapshot compressive imaging: Theory, algorithms, and applications. IEEE Signal Process Mag. 2021;38:65–88.

[100] Wang P, Liang J, Wang L. Single-shot ultrafast imaging attaining 70 trillion frames per second. Nat Commun. 2020;11:2091.

[101] Feng X, Gao L. Ultrafast light field tomography for snapshot transient and non-line-of-sight imaging. Nat Commun. 2021;12:2179.

[102] Satat G, Tancik M, Raskar R. Lensless imaging with compressive ultrafast sensing. IEEE Trans Comput Imaging. 2017;3:398–407.

[103] Yang C, Qi D, Cao F, He Y, Yao J, Ding P, Ouyang X, Yu Y, Jia T, Xu S, et al. Single-shot receive-only ultrafast electro-optical deflection imaging. Phys Rev Appl. 2020;13:024001.

[104] Lu Y, Wong TW, Chen F, Wang L. Compressed ultrafast spectral-temporal photograpy. Phys Rev Lett. 2019;122:193904.

[105] Davidson ZE, Gonzalez-Izquierdo B, Higginson A, Lancaster KL, Williamson SDR, King M, Farley D, Neely D, McKenna P, Gray RJ. An optically multiplexed single-shot time-resolved probe of laser–plasma dynamics. Opt Express. 2019;27:4416–4423.

[106] Gao G, He K, Tian J, Zhang C, Zhang J, Wang T, Chen S, Jia H, Yuan F, Liang L, et al. Ultrafast all-optical solid-state framing camera with picosecond temporal resolution. Opt Express. 2017;25(8):8721–8729.

[107] Mait JN, Euliss GW, Athale RA. Computational imaging. Adv Opt Photon. 2018;10:409–483.

[108] Li JY, Zhao L, Wu XQ, Liu F, Wei YZ, Yu C, Shao XP. Computational optical system design: A global optimization method in a simplified imaging system. Appl Opt. 2022;61:5916–5925.

[109] Kubala K, Dowski E, Cathey WT. Reducing complexity in computational imaging systems. Opt Express. 2003;11:2102–2108.

[110] Luo Y, Zhao Y, Li J, Çetintaş E, Rivenson Y, Jarrahi M, Ozcan A. Computational imaging without a computer: Seeing through random diffusers at the speed of light. eLight. 2022;2:4.

[111] Cossairt OS, Gupta M, Nayar SK. When does computational imaging improve performance? IEEE Trans Image Process. 2013;22:447–458.

[112] Sidorenko P, Lahav O, Cohen O. Ptychographic ultrahigh-speed imaging. Opt Express. 2017;25:10997–11008.

[113] Mochizuki F, Kagawa K, Okihara SI, Seo MW, Zhang B, Takasawa T, Yasutomi K, Kawahito S. Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor. Opt Express. 2016;24(4):4155–4176.

[114] Matlis NH, Axley A, Leemans WP. Single-shot ultrafast tomographic imaging by spectral multiplexing. Nat Commun. 2012;3:1111.

[115] Fienup JR. Phase retrieval algorithms: A comparison. Appl Opt. 1982;21:2758–2769.

[116] Miao J, Charalambous P, Kirz J, Sayre D. Extending the methodology of X-ray crystal-lography to allow imaging of micrometre-sized non-crystalline specimens. Nature. 1999;400:342–344.

[117] Wengrowicz O, Peleg O, Loevsky B, Chen BK, Haham GI, Sainadh US, Cohen O. Experimental time-resolved imaging by multiplexed ptychography. Opt Express. 2019;27:24568.

[118] Rodenburg JM. Ptychography and related diffractive imaging methods. Adv Imaging Electron Phys. 2008;150:87–184.

[119] Rodenburg JM, Faulkner HML. A phase retrieval algorithm for shifting illumination. Appl Phys Lett. 2004;85(20):4795–4797.

[120] Batey DJ, Claus D, Rodenburg JM. Information multiplexing in ptychography. Ultramicroscopy. 2014;138:13–21.

[121] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements. Nature. 2013;494(7435):68–71.

[122] Gerchberg R, Saxton W. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik. 1972;35:227–246.

[123] Abbey B. From grain boundaries to single defects: A review of coherent methods for materials imaging in the x-ray sciences. JOM. 2013;65:1183–1201.

[124] Pan X, Liu C, Zhu J. Single-shot ptychographical iterative engine based on multi-beam illumination. Appl Phys Lett. 2013;103:171105.

[125] Sidorenko P, Cohen O. Single-shot ptychography. Optica. 2016;3(1):9.

[126] Li P, Edo T, Batey D, Rodenburg J, Maiden A. Breaking ambiguities in mixed state ptychography. Opt Express. 2016;24:9038–9052.

[127] Zhang F, Chen B, Morrison GR, Vila-Comamala J, GuizarSicairos M, Robinson IK. Phase retrieval by coherent modulation imaging. Nat Commun. 2016;7:13367.

[128] Fienup JR. Reconstruction of an object from the modulus of its Fourier transform. Opt Lett. 1978;3:27–29.

[129] Donoho DL. Compressed sensing. IEEE T Inform Theory. 2006;52(4):289–1306.

[130] Yin F, Meng YZ, Yang Q, Kai L, Liu Y, Hou X, Lu Y, Chen F. High precision reconstruction for compressed femtosecond dynamics images based on the TVAL3 algorithm. Opt. Mater. Express. 2022;12(11):4435–4443.

[131] Jin C, Qi D, Yao J, He Y, Ding P, Guo Z, Huang Z, He Y, Yao Y, Wang Z, et al. Weighted multi-scale denoising via adaptive multi-channel fusion for compressed ultrafast photography. Opt Express. 2022;30:31157–31170.

[132] Haocheng T, Ting M, Xianglei L, Yaodan H, Jingqin S, Yanlei Z, Ping L, Jinyang L, Downer MC, Zhengyan L. Single-shot compressed optical field topography. Light Sci Appl. 2022;11:244.

[133] Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, et al. Isolated single-cycle attosecond pulses. Science. 2006;314:443.

[134] Herman GT. Fundamentals of computerized tomography: Image reconstruction from projections. 2nd ed. London: Springer; 2009.

[135] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner HJ. Streaking of 43-attosecond soft-x-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt Express. 2017;25(22):27506–27518.

[136] Feist A, Rubiano da Silva N, Liang W, Ropers C, Schäfer S. Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy. Struct Dyn. 2018;5:014302.

[137] Geohegan DB, Puretzky AA, Duscher G, Pennycook SJ. Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation. Appl Phys Lett. 1998;72:2987.

[138] Kim T, Liang J, Zhu L, Wang LV. Picosecond-resolution phase-sensitive imaging of transparent objects in a single shot. Sci Adv. 2020;6:eaay6200.

[139] Zeng X, Wang C, Cai Y, Lin Q, Lu X, Lin J, Yuan X, Cao W, Ai Y, Xu S. High spatial-resolution biological tissue imaging in the second near-infrared region via optical parametric amplification pumped by an ultrafast vortex pulse. Chin Opt Lett. 2022;20(10):100003.

[140] Qiu X, Li F, Zhang W, Zhu Z, Chen L. Spiral phase contrast imaging in nonlinear optics: Seeing phase objects using invisible illumination. Optica. 2018;5(2):208–212.

[141] Liu SK, Yang C, Liu SL, Zhou ZY, Li Y, Li YH, Xu ZH, Guo GC, Shi BS. Up-conversion imaging processing with field-of-view and edge enhancement. Phys Rev Appl. 2019;11:044013.

[142] Liang J, Wang P, Zhu L, Wang LV. Single-shot stereo-polarimetric compressed ultrafast photography for light-speed observation of high-dimensional optical transients with picosecond resolution. Nat Commun. 2020;11(1):5252.

[143] Chong TC, Hong MH, Shi LP. Laser precision engineering: From microfabrication to nanoprocessing. Laser Photonics Rev. 2010;4:123–143.

[144] Sugioka K. Hybrid femtosecond laser three-dimensional micro- and nanoprocessing: A review. Int J Extrem Manuf. 2019;1(1): Article 012003.

[145] Chen H, He X, Qing L, Wu Y, Ren C, Sheriff RE, Zhu C. Real-world single image super-resolution: A brief review. Inform Fusion. 2022;79:124–145.

[146] Li X, Cao G, Zhang Y, Shafique A, Fu P. Combining synthesis sparse with analysis sparse for single image super-resolution. Signal Process Image Commun. 2020;83: Article 115805.

[147] Zhang K, Wang Z, Li J, Gao X, Xiong Z. Learning recurrent residual regressors for single image super-resolution. Signal Process. 2019;154:324–337.

[148] Tang MW, Liu XW, Wen Z, Lin F, Meng C, Liu X, Ma Y, Yang Q. Far-field superresolution imaging via spatial frequency modulation. Laser Photonics Rev. 2020;14(11):1900011.

[149] Hao X, Kuang C, Li Y, Liu X. Evanescent-wave-induced frequency shift for optical superresolution imaging. Opt Lett. 2013;38:2455–2458.

[150] Lai Y, Xue Y, Côté CY, Liu X, Laramée A, Jaouen N, Légaré F, Tian L, Liang J. Single-shot ultraviolet compressed ultrafast photography. Laser Photonics Rev. 2020;14(10):2000122.

[151] Ding P, Yao Y, Qi D, Yang C, Cao F, He Y, Yao J, Jin C, Huang Z, Deng L, et al. Single-shot spectral-volumetric compressed ultrafast photography. Adv Photon. 2021;3(4): Article 045001.

[152] Li J, Lu J, Chew A, Han S, Li J, Wu Y, Wang H, Ghimire S, Chang Z. Attosecond science based on high harmonic generation from gases and solids. Nat Commun. 2020;11: Article 2748.

[153] Yang Y, Mainz RE, Rossi GM, Scheiba F, Silva-Toledo MA, Keathley PD, Cirmi G, Kärtner FX. Strong-field coherent control of isolated attosecond pulse generation. Nat Commun. 2021;12: Article 6641.

[154] Pushkin A, Migal E, Suleimanova D, Mareev E, Potemkin F. High-power solid-state near- and Mid-IR ultrafast laser sources for strong-field science. Photo-Dermatology. 2022;9(2):90.

[155] Dhillon S. Mid-infrared ultrashort pulse generation. Nat Photon. 2021;15:869–870.

[156] Liao G-Q, Liu H, Scott GG, Zhang Y-H, Zhu B-J, Zhang Z, Li Y-T, Armstrong C, Zemaityte E, Bradford P, et al. Towards terawatt-scale spectrally tunable terahertz pulses via relativistic laser-foil interactions. Phys Rev X. 2020;10(3): Article 031062.

[157] Fülöp JA, Tzortzakis S, Kampfrath T. Laser-driven strong-field terahertz sources. Adv Optical Mater. 2020;8(3):1900681.

[158] Haenlein M, Kaplan A. A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. Calif Manag Rev. 2019;61(4):5–14.

[159] Ma YY, Feng XH, Gao L. Deep-learning-based image reconstruction for compressed ultrafast photography. Opt Lett. 2020;45(16):4400–4403.

[160] Yang C, Yao Y, Jin C, Qi D, Cao F, He Y, Yao J, Ding P, Gao L, Jia T, et al. High-fidelity image reconstruction for compressed ultrafast photography via an augmented-Lagrangian and deep-learning hybrid algorithm. Photon. Res. 2021;9(2):B30–B37.

[161] Luo XG. Subwavelength artificial structures: Opening a new era for engineering optics. Adv Mater. 2019;31(4):1804680.

[162] Divitt S, Zhu W, Zhang C, Lezec H, Agrawal A. Ultrafast optical pulse shaping using dielectric metasurfaces. Science. 2019;364(6443):890–894.

[163] Hu HM, Ji BY, Song HB, Lang P, Lin JQ. Ultrafast spatiotemporal control of the femtosecond Bessel surface plasmon polariton by a chirped laser pulse. Optics Commun. 2023;526: Article 128910.

[164] Makwana M, Craster R, Guenneau S. Topological beam-splitting in photonic crystals. Opt Express. 2019;27(11):16088–16102.

[165] Chang H, Chang Q, Xi J, Hou T, Su R, Ma P, Wu J, Li C, Jiang M, et al. First experimental demonstration of coherent beam combining of more than 100 beams. Photon Res. 2020;8(12):1943–1948.

Xuanke Zeng, Xiaowei Lu, Congying Wang, Kaipeng Wu, Yi Cai, Hongmei Zhong, Qinggang Lin, Jiahe Lin, Ruiwei Ye, Shixiang Xu. Review and Prospect of Single-Shot Ultrafast Optical Imaging by Active Detection[J]. Ultrafast Science, 2023, 3(1): 0020
Download Citation