• Chinese Journal of Quantum Electronics
  • Vol. 35, Issue 4, 385 (2018)
Yawen ZHANG1、*, Limei QI1、2, Chang LIU1, Junsheng YU1, Zhijiao CHEN1, Xiaoming LIU1, Yuan YAO1, and Xiaodong CHEN1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2018.04.001 Cite this Article
    ZHANG Yawen, QI Limei, LIU Chang, YU Junsheng, CHEN Zhijiao, LIU Xiaoming, YAO Yuan, CHEN Xiaodong. Investigation of asymmetric transmission devices based on metamaterials[J]. Chinese Journal of Quantum Electronics, 2018, 35(4): 385 Copy Citation Text show less
    References

    [1] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ [J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514.

    [2] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction [J]. Science, 2001, 292(5514): 77-79.

    [3] Zhang S, Liu F, Zentgraf T, Li J S. Interference-induced asymmetric transmission through a monolayer of anisotropic chiral metamolecules [J]. Physical Review A, 2013, 88(2): 53-58.

    [4] Zhang X Y, Tan R B, Zheng Z X, et al. Terahertz filters based on frequency selective surfaces for high-speed terahertz switch [J]. Journal of Applied Physics, 2013, 113(1): 153-170.

    [6] Papakostas A, Potts A, Bagnall D M, et al. Optical manifestations of planar chirality [J]. Physical Review Letters, 2003, 90(10): 107404.

    [7] Pendry J B. A chiral route to negative refraction [J]. Science, 2004, 30(5700): 1353-1355.

    [8] Fedotov V A, Mladyonov P L, Prosvirnin S L, et al. Asymmetric propagation of electromagnetic waves through a planar chiral structure [J]. Physical Review Letters, 2006, 97(16): 167401.

    [9] Xu J Y, Zhuang X J, Guo P F, et al. Asymmetric light propagation in composition graded semiconductor nanowires [J]. Scientific Reports, 2012, 2(11): 820-825.

    [10] Wang F, Liu X C, Wang Z P, Shi J H. A study of asymmetric transmission of terahertz waves based on chiral metamaterials [J]. Journal of Harbin Engineering University, 2015, 12: 1638-1641.

    [11] Ma X L, Huang C, Pu M B. Multi-band circular polarizer using planar spiral metamaterial structure [J]. Optics Express, 2012, 20: 16050-16058.

    [12] Caloz C, Itoh T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach [M]. IEEE Xplore, 2005.

    [13] Drezet A, Genet C, Laluet J Y, et al. Optical chirality without optical activity: How surface plasmons give a twist to light [J]. Optics Express, 2008, 1(17): 12559.

    [14] Lu S Y, Russell A C. Interpretation of Mueller matrices based on polar decomposition [J]. Journal of the Optical Society of America A, 1996, 13(5): 1106-1113.

    [15] Menzel C, Rockstuhl C, Lederer F. An advanced Jones calculus for the classification of periodic metamaterials [J]. Physical Review A, 2010, 82(5): 3464-3467.

    [16] Fan W J, Wang Y R, Zheng R Q, et al. Broadband high efficiency asymmetric transmission of achiral metamaterials [J]. Optics Express, 2015, 23(15): 19535.

    [17] Fedotov V A, Schwanecke A S, Zheludev N I, et al. Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures [J]. Nano Letters, 2007, 7(7): 1996-1999.

    [18] Huang C, Feng Y J, Zhao J M, et al. Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures [J]. Physical Review B: Condensed Matter, 2012, 85(19): 195131.

    [19] Han S, Yang H L, Guo L Y, et al. Manipulating linearly polarized electromagnetic waves using the asymmetric transmission effect of planar chiral metamaterials [J]. Journal of Optics, 2014, 1(3): 035105.

    [20] Liu D J, Xiao Z Y, Wang Z H. Multi-band asymmetric transmission and 90° polarization rotator based on bi-layered metasurface with F-shaped structure [J]. Plasmonics, 2016, 12(2): 1-8.

    [21] Feng Y J, Wu L X, Zhao J M, et al. Diode-like asymmetric transmission of linearly polarized waves through twisted split-ring metamaterial structure [C]. Microwave Conference, 2012: 1157-1159.

    [22] Huang C, Zhao J, Jiang T, et al. Asymmetric transmission of linearly polarized electromagnetic wave through chiral metamaterial structure [J]. Journal of Electromagnetic Waves and Applications, 2012, 2(8-9): 1192-1202.

    [23] Liu D Y, Zhai X M, Yao L F, et al. Asymmetric transmission with double bands based on chiral twisted double-split-ring resonators [J]. Optics Communications, 2014, 323(5): 19-22.

    [24] Tian D, Li W, Xu R, et al. Broadband asymmetric transmission of linearly polarised wave based on bilayered chiral metamaterial [J]. IET Microwaves, Antennas and Propagation, 2017, 11(2): 171-176.

    [25] Mutlu M, Akosman A E, Andriy E S, et al. Asymmetric transmission of linearly polarized waves and polarization angle dependent wave rotation using a chiral metamaterial [J]. Optics Express, 2011, 19(15): 14290.

    [26] Li Z F, Mutlu M, Ozbay E. Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials [J]. Journal of Physics D: Applied Physics, 2014, 47(7): 186-187.

    [27] Zhang L B, Zhou P H, Chen H Y, et al. Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- band [J]. Scientific Reports, 2016, 6: 33826.

    [28] Liu Y J, Xia S, Shi H Y, et al. Dual-band asymmetric transmission and cross-polarization conversion of linearly polarized wave using multi-layered metamaterial [C]. IEEE MTT-S IMWS-AMP, 2016: 1-4.

    [29] Liu D Y, Li M H, Zhai X M, et al. Enhanced asymmetric transmission due to Fabry-Perot-like cavity [J]. Optics Express, 2014, 22(10): 11707.

    [30] Wu X D, Cao H L. Broadband asymmetric transmission of linear polarization in tri-layered chiral metasurface [C]. IEEE International Symposium on Antennas and Propagation, 2016.

    [31] Liu D J, Xiao Z Y, Ma X L, et al. Broadband asymmetric transmission and polarization conversion of a linearly polarized wave based on chiral metamaterial in terahertz region [J]. Wave Motion, 2016, 66: 1-9.

    [32] Fang S Y, Liu H, Li Y X, et al. Terahertz dual-band asymmetric transmission of linear polarization in multi-layered chiral metamaterials [C]. Progress in Electromagnetic Research Symposium, 2016: 2691-2694.

    [33] Fang S Y, Luan K, Ma H F, et al. Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials [J]. Journal of Applied Physics, 2017, 121: 033103.

    [34] Liu D J, Xiao Z Y, Ma X L, et al. Dual-band asymmetric transmission of chiral metamaterial based on complementary U-shaped structure [J]. Applied Physics A, 2015, 118(3): 787-791.

    [35] Kenanakis G, Xomalis A, et al. Three-dimensional infrared metamaterial with asymmetric transmission [J]. ACS Photonics, 2015, 2(2): 287-294.

    [36] Wu L, Yang Z Y, Cheng Y Z, et al. Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials [J]. Applied Physics Letters, 2013, 103(2): 2494-2498.

    [37] Singh R, Plum E, Menzel C, et al. Terahertz metamaterial with asymmetric transmission [J]. Physical Review B, 2009, 80(15): 2524-2527.

    [38] Xu K K, Xiao Z Y, Tang J Y. Dual-band asymmetric transmission of both linearly and circularly polarized waves based on chiral meta-surface [J]. Optical and Quantum Electronics, 2016, 48(8): 1-12.

    [39] Xu K K, Xiao Z Y, Tang J Y, et al. Asymmetric transmission of both linearly and circularly polarized waves in multi-layered meta-surface [C]. Progress in Electromagnetic Research Symposium, 2016: 2713-2717.

    [40] Rajkumar R, Yogesh N, Subramanian V. Cross polarization converter formed by rotated-arm-square chiral metamaterial [J]. Journal of Applied Physics, 2013, 114(22): 224506.

    [41] Zhu W, Rukhlenko I D, Xiao F, et al. Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking [J]. Journal of Applied Physics, 2014, 115(14): 143101.

    [42] Zhang X, Shkurinov A M, Zhang Y. Extreme terahertz science [J]. Nature Photonics, 2017, 11: 16-18.

    [43] Prinz V, Naumova E, Golod S, et al. Terahertz metamaterials and systems based on rolled-up 3D elements: Designs, technological approaches, and properties [J]. Scientific Reports, 2017, 7: 43334.

    CLP Journals

    [1] XIAO Tong, TIAN Changhui, WANG Jun, MENG Zhen, FAN Qi, GAO Zhiqiang, XIE Xiaowei, TIAN Xiaoxia. Chiral Metasurface Designed for the Asymmetric Transmission of the Mid-infrared Band[J]. Infrared Technology, 2021, 43(3): 272

    ZHANG Yawen, QI Limei, LIU Chang, YU Junsheng, CHEN Zhijiao, LIU Xiaoming, YAO Yuan, CHEN Xiaodong. Investigation of asymmetric transmission devices based on metamaterials[J]. Chinese Journal of Quantum Electronics, 2018, 35(4): 385
    Download Citation