• Advanced Photonics
  • Vol. 4, Issue 3, 036001 (2022)
Jintian Lin1、2、†, Saeed Farajollahi3, Zhiwei Fang4, Ni Yao5、6, Renhong Gao1、2, Jianglin Guan4、7, Li Deng4、7, Tao Lu3、*, Min Wang4、7, Haisu Zhang4、7, Wei Fang6、8、*, Lingling Qiao1、2, and Ya Cheng1、2、4、7、9、10、11、*
Author Affiliations
  • 1Chinese Academy of Sciences (CAS), Shanghai Institute of Optics and Fine Mechanics (SIOM), State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai, China
  • 2University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China
  • 3University of Victoria, Department of Electrical and Computer Engineering, Victoria, British Columbia, Canada
  • 4East China Normal University, School of Physics and Electronic Science, XXL—The Extreme Optoelectromechanics Laboratory, Shanghai, China
  • 5Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou, China
  • 6Zhejiang University, College of Optical Science and Engineering, The Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, China
  • 7East China Normal University, State Key Laboratory of Precision Spectroscopy, Shanghai, China
  • 8Jiaxing Institute of Zhejiang University, Intelligent Optics & Photonics Research Center, Jiaxing, China
  • 9Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
  • 10Shandong Normal University, Collaborative Innovation Center of Light Manipulations and Applications, Jinan, China
  • 11Shanghai Research Center for Quantum Sciences, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.4.3.036001 Cite this Article Set citation alerts
    Jintian Lin, Saeed Farajollahi, Zhiwei Fang, Ni Yao, Renhong Gao, Jianglin Guan, Li Deng, Tao Lu, Min Wang, Haisu Zhang, Wei Fang, Lingling Qiao, Ya Cheng. Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser[J]. Advanced Photonics, 2022, 4(3): 036001 Copy Citation Text show less
    References

    [1] M. Kösters et al. Optical cleaning of congruent lithium niobate crystals. Nat. Photonics, 3, 510-513(2009).

    [2] Y. Kong et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv. Mater., 32, 1806452(2020).

    [3] A. Boes et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev., 12, 1700256(2018).

    [4] J. Lin et al. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Res., 8, 1910-1936(2020).

    [5] Y. Qi, Y. Li. Integrated lithium niobate photonics. Nanophotonics, 9, 1287-1320(2020).

    [6] Y. Jia, L. Wang, F. Chen. Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev., 8, 011307(2021).

    [7] D. Zhu et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242-352(2021).

    [8] M. Zhang et al. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica, 8, 652-667(2021).

    [9] M. Xu et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    [10] C. Wang et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).

    [11] Y. He et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138-1144(2019). https://doi.org/10.1364/OPTICA.6.001138

    [12] Z. Gong et al. Near-octave lithium niobate soliton microcomb. Optica, 7, 1275-1278(2020).

    [13] J. Lin et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett., 122, 173903(2019).

    [14] R. Luo et al. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica, 5, 1006-1011(2018).

    [15] G.-T. Xue et al. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip. Phys. Rev. Appl., 15, 064059(2021).

    [16] Y. Liu et al. On-chip erbium-doped lithium niobate microcavity laser. Sci. China Phys. Mech. Astron., 64, 234262(2021).

    [17] Z. Wang et al. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator. Opt. Lett., 46, 380-383(2021).

    [18] R. Gao et al. On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator. Opt. Lett., 46, 3131-3134(2021).

    [19] Q. Luo et al. On-chip erbium-doped lithium niobate microring lasers. Opt. Lett., 46, 3275-3278(2021).

    [20] T. Li et al. A single-frequency single-resonator laser on erbium-doped lithium niobate on insulator. APL Photonics, 6, 101301(2021).

    [21] R. Zhang et al. Integrated lithium niobate single-mode lasers by the Vernier effect. Sci. China Phys. Mech. Astron., 64, 294216(2021).

    [22] Z. Xiao et al. Single-frequency integrated laser on erbium-doped lithium niobate on insulator. Opt. Lett., 46, 4128-4131(2021).

    [23] T. Lu et al. A narrow-linewidth on-chip toroid Raman laser. IEEE J. Quantum Electron., 47, 320-326(2011).

    [24] L. He et al. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol., 6, 428-432(2011).

    [25] L. Feng et al. Single-mode laser by parity-time symmetry breaking. Science, 346, 972-975(2014).

    [26] H. Rong et al. A continuous-wave Raman silicon laser. Nature, 433, 725-728(2005).

    [27] T. Lu et al. On-chip green silica upconversion microlaser. Opt. Lett., 34, 482-484(2009).

    [28] A. Schawlow, C. H. Townes. Infrared and optical masers. Phys. Rev., 112, 1940-1949(1958).

    [29] C. H. Henry. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron., 18, 259-264(1982).

    [30] P. Goldberg, P. W. Milonni, B. Sundaram. Theory of the fundamental laser linewidth. Phys. Rev. A, 44, 1969-1985(1991).

    [31] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [32] Z. Fang et al. Polygon coherent modes in a weakly perturbed whispering gallery microresonator for efficient second harmonic, optomechanical, and frequency comb generations. Phys. Rev. Lett., 125, 173901(2020).

    [33] R. Wu et al. Lithium niobate microdisk resonators of quality factors above 107. Opt. Lett., 43, 4116-4119(2018).

    [34] D. Derickson. Fiber Optic Test and Measurement(1998).

    [35] H. Jiang et al. Fast response of photorefraction in lithium niobate microresonators. Opt. Lett., 42, 3267-3270(2017).

    [36] J. Wang et al. Thermo-optic effects in on-chip lithium niobate microdisk resonators. Opt. Express, 24, 21869-21879(2016).

    [37] T.-J. Wang et al. On-chip optical microresonators with high electro-optic tuning efficiency. J. Lightwave Technol., 38, 1851-1857(2020).

    [38] A. Yariv, P. Yeh. Photonics: Optical Electronics in Modern Communications(2007).

    [39] D. N. Nikogosyan. Nonlinear Optical Crystals: A Complete Survey(2006).

    [40] X. Du, S. Vincent, T. Lu. Full-vectorial whispering-gallery-mode cavity analysis. Opt. Express, 21, 22012-22022(2013).

    [41] X. Du et al. Generalized full-vector multi-mode matching analysis of whispering gallery microcavities. Opt. Express, 22, 13507-13514(2014).

    [42] A. Yariv. Quantum Electronics(1991).

    Jintian Lin, Saeed Farajollahi, Zhiwei Fang, Ni Yao, Renhong Gao, Jianglin Guan, Li Deng, Tao Lu, Min Wang, Haisu Zhang, Wei Fang, Lingling Qiao, Ya Cheng. Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser[J]. Advanced Photonics, 2022, 4(3): 036001
    Download Citation