• Frontiers of Optoelectronics
  • Vol. 5, Issue 1, 7 (2012)
Jiaming SUN1、*, M. HELM2, W. SKORUPA2, B. SCHMIDT2, and A. MüCKLICH2
Author Affiliations
  • 1Key Laboratory of Weak Light Nonlinear Photonics Ministry of Education, Nankai University, Tianjin 300071, China
  • 2Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01314, Germany
  • show less
    DOI: 10.1007/s12200-012-0226-5 Cite this Article
    Jiaming SUN, M. HELM, W. SKORUPA, B. SCHMIDT, A. MüCKLICH. Highly efficient silicon light emitting diodes produced by doping engineering[J]. Frontiers of Optoelectronics, 2012, 5(1): 7 Copy Citation Text show less
    References

    [1] Pavesi L. Will silicon be the photonic material of the third millenium Journal of Physics: Condensed Matter, 2003, 15(26): R1169-R1196

    [2] Ennen H, Schneider J, Pomrenke G, Axmann A. 1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon. Applied Physics Letters, 1983, 43(10): 943-945

    [3] Michel J, Benton J L, Ferrante R F, Jacobson D C, Eaglesham D J, Fitzgerald E A, Xie Y H, Poate J M, Kimerling L C. Impurity enhancement of the 1.54-μm Er3+ luminescence in silicon. Journal of Applied Physics, 1991, 70(5): 2672-2678

    [4] Franzò G, Irrera A, Moreira E C, Miritello M, Iacona F, Sanfilippo D, Di Stefano G, Fallica P G, Priolo F. Electroluminescence of silicon nanocrystals in MOS structures. Applied Physics A: Materials Science & Processing, 2002, 74(1): 1-5

    [5] Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F. Optical gain in silicon nanocrystals. Nature, 2000, 408(6811): 440-444

    [6] Iacona F, Pacifici D, Irrera A, Miritello M, Franzò G, Priolo F, Sanfilippo D, Di Stefano G, Fallica P G.Electroluminescence at 1.54 μm in Er-doped Si nanoclustor-based devices. Applied Physics Letters, 2002, 81(17): 3242-3244

    [7] Rebohle L, Gebel T, Von Borany J, Skorupa W, Helm M, Pacifici D, Franzò G, Priolo F. Transient behavior of the strong violet electroluminescence of Ge-implanted SiO2 layers. Applied Physics B, Lasers and Optics, 2002, 74(1): 53-56

    [8] Sun J M, Skorupa W, Dekorsy T, Helm M. Efficient electroluminescence from rare-earth implanted SiO2 metal-oxide-semiconductor structures. In: 2nd IEEE International Conference on Group IV Photonics, 2005, 48-51

    [9] Ng W L, Louren o M A, Gwilliam R M, Ledain S, Shao G, Homewood K P. An efficient room-temperature silicon-based lightemitting diode. Nature, 2001, 410(6825): 192-194

    [10] Sun J M, Dekorsy T, Skorupa W, Schmidt B, Helm M. Origin of anomalous temperature dependence and high efficiency of silicon light-emitting diodes. Applied Physics Letters, 2003, 83(19): 3885-3887

    [11] Sun J. M, Dekorsy T, Skorupa, W, Schmidt B, Mücklich A, Helm M. Below-band-gap electroluminescence related to doping spikes in boron-implanted silicon pn diodes. Physical Review B, 2004, 70(15): 155316(1-11)

    [12] Solmi S, Landi E, Baruffaldi F. High-concentration boron diffusion in silicon: Simulation of the precipitation phenomena. Journal of Applied Physics, 1990, 68(7): 3250-3258

    [13] Bonafos C, Claverie A, Alquier D, Bergaud C, Martinez A, Laanab L, Mathiot D. The effect of the boron doping level on the thermal behaviour of end-of-range defects in silicon. Applied Physics Letters, 1997, 71(3): 365-367

    Jiaming SUN, M. HELM, W. SKORUPA, B. SCHMIDT, A. MüCKLICH. Highly efficient silicon light emitting diodes produced by doping engineering[J]. Frontiers of Optoelectronics, 2012, 5(1): 7
    Download Citation