• Acta Optica Sinica
  • Vol. 41, Issue 18, 1823001 (2021)
Yang Wang1, Xuefei Xuan1, Lu Zhu2, Jiabing Zhu1、*, Xiaobo Shen1、**, Yan Wu1, and Qiang Gao1
Author Affiliations
  • 1School of Electronic Engineering, Huainan Normal University, Huainan, Anhui 232038, China
  • 2School of Information Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
  • show less
    DOI: 10.3788/AOS202141.1823001 Cite this Article Set citation alerts
    Yang Wang, Xuefei Xuan, Lu Zhu, Jiabing Zhu, Xiaobo Shen, Yan Wu, Qiang Gao. Design of Multi-Layer Gear-Shaped Metamaterial Absorber with Broadband and High Absorption[J]. Acta Optica Sinica, 2021, 41(18): 1823001 Copy Citation Text show less
    References

    [1] Cui T J. Electromagnetic metamaterials: from effective media to field programmable systems[J]. Scientia Sinica (Informationis), 50, 1427-1461(2020).

    [2] Xiao S Y, Wang T, Liu T T et al. Active metamaterials and metadevices: a review[J]. Journal of Physics D: Applied Physics, 53, 503002(2020).

    [3] Zhang Y B, Yi Z, Wang X Y et al. Dual band visible metamaterial absorbers based on four identical ring patches[J]. Physica E: Low-Dimensional Systems and Nanostructures, 127, 114526(2021).

    [4] Chu Q H, Yang M S, Chen J et al. Characteristics of tunable terahertz multi-band absorber[J]. Chinese Journal of Lasers, 46, 1214003(2019).

    [5] Wang H S, Han K, Sun W et al. Design and experimental investigation of triple-band metamaterial broadband bandpass filter[J]. Acta Optica Sinica, 37, 0623001(2017).

    [6] Chu P X, Chen J X, Xiong Z G et al. Controllable frequency conversion in the coupled time-modulated cavities with phase delay[J]. Optics Communications, 476, 126338(2020).

    [7] Huang L, Chowdhury D R, Ramani S et al. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band[J]. Optics Letters, 37, 154-156(2012).

    [8] Wei W, Zhao Q, Shi X B. Preparation of gold nanoclusters by template method and applications in biomolecule biosensing[J]. Acta Laser Biology Sinica, 28, 296-304(2019).

    [9] Liu J, Chen W, Ma W Z et al. Ultra-broadband infrared absorbers using iron thin layers[J]. IEEE Access, 8, 43407-43412(2020).

    [10] Qin Z, Meng D J, Yang F M et al. Broadband long-wave infrared metamaterial absorber based on single-sized cut-wire resonators[J]. Optics Express, 29, 20275-20285(2021).

    [11] Li H, Yu J, Chen Z. Broadband tunable terahertz absorber based on hybrid graphene-vanadium dioxide metamaterials[J]. Chinese Journal of Lasers, 47, 0903001(2020).

    [12] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [13] Li D M, Yuan S, Yang R C et al. Dynamical optical-controlled multi-state THz metamaterial absorber[J]. Acta Optica Sinica, 40, 0816001(2020).

    [14] Shen X P, Cui T J, Zhao J M et al. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express, 19, 9401-9407(2011).

    [15] Liu Y Y, Liu H, Liu K et al. Ultra-broadband perfect absorber with rectangular multilayer structure[J]. Acta Optica Sinica, 40, 2323001(2020).

    [16] Zhou Y, Liang Z Z, Qin Z et al. Small-sized long wavelength infrared absorber with perfect ultra-broadband absorptivity[J]. Optics Express, 28, 1279-1290(2020).

    [17] Abbas M N, Cheng C W, Chang Y C et al. Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2[J]. Applied Physics Letters, 98, 121116(2011).

    [18] Cui Y X, Fung K H, Xu J et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 12, 1443-1447(2012).

    [19] Yang S, Yuan S, Wang J Y. Light-excited and switchable dual-band terahertz metamaterial absorber[J]. Acta Optica Sinica, 41, 0216001(2021).

    [20] Li C, Xiao Z Y, Ling X Y et al. Broadband visible metamaterial absorber based on a three-dimensional structure[J]. Waves in Random and Complex Media, 29, 403-412(2019).

    [21] Nejat M, Nozhat N. Design, theory, and circuit model of wideband, tunable and polarization-insensitive terahertz absorber based on graphene[J]. IEEE Transactions on Nanotechnology, 18, 684-690(2019).

    [22] Cong J W, Zhou Z Q, Yun B F et al. Broadband visible-light absorber via hybridization of propagating surface plasmon[J]. Optics Letters, 41, 1965-1968(2016).

    [23] Hoa N T Q, Lam P H, Tung P D et al. Numerical study of a wide-angle and polarization-insensitive ultrabroadband metamaterial absorber in visible and near-infrared region[J]. IEEE Photonics Journal, 11, 1-8(2019).

    [24] Wu D, Liu C, Liu Y M et al. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion[J]. RSC Advances, 8, 21054-21064(2018).

    [25] Lei L, Li S, Huang H X et al. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial[J]. Optics Express, 26, 5686-5693(2018).

    [26] Ding F, Jin Y, Li B R et al. Ultrabroadband strong light absorption based on thin multilayered metamaterials[J]. Laser & Photonics Reviews, 8, 946-953(2014).

    [27] Yi Z, Li J K, Lin J C et al. Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array[J]. Nanoscale, 12, 23077-23083(2020).

    [28] Li J K, Chen X F, Yi Z et al. Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays[J]. Materials Today Energy, 16, 100390(2020).

    [29] Smith D R, Dalichaouch R, Kroll N et al. Photonic band structure and defects in one and two dimensions[J]. Journal of the Optical Society of America B, 10, 314-321(1993).

    [30] Palik E D[M]. Handbook of optical constants of solids II(1985).

    [31] Liu J, Chen W, Zheng J C et al. Wide-angle polarization-independent ultra-broadband absorber from visible to infrared[J]. Nanomaterials, 10, E27(2019).

    [32] Ding F, Dai J, Chen Y T et al. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals[J]. Scientific Reports, 6, 39445(2016).

    [33] Cao Y H, Zhang S W, Sun X D et al. Light-trapping effect of sub-wavelength metal trapezoidal groove array[J]. Laser & Optoelectronics Progress, 56, 202416(2019).

    [34] Li Z B, Yang Y H, Kong X T et al. Fabry-Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit[J]. Journal of Optics A: Pure and Applied Optics, 11, 105002(2009).

    [35] Hu S, Yang S Y, Liu Z et al. Broadband and polarization-insensitive absorption based on a set of multisized Fabry-Perot-like resonators[J]. The Journal of Physical Chemistry C, 123, 13856-13862(2019).

    [36] Smith D R, Schultz S, Markoš P et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Physical Review B, 65, 195104(2002).

    [37] Smith D R, Padilla W J, Vier D C et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 84, 4184-4187(2000).

    [38] Qin F, Chen X F, Yi Z et al. Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure[J]. Solar Energy Materials and Solar Cells, 211, 110535(2020).

    [39] Vece M D. Kuang Y H, van Duren S N F, et al. Plasmonic nano-antenna a-Si: H solar cell[J]. Optics Express, 20, 27327-27336(2012).

    Yang Wang, Xuefei Xuan, Lu Zhu, Jiabing Zhu, Xiaobo Shen, Yan Wu, Qiang Gao. Design of Multi-Layer Gear-Shaped Metamaterial Absorber with Broadband and High Absorption[J]. Acta Optica Sinica, 2021, 41(18): 1823001
    Download Citation