• Photonics Research
  • Vol. 7, Issue 11, 1354 (2019)
Jitao Gao1、†, Elham Nazemosadat2、†, Chen Yang3, Songnian Fu1、*, Ming Tang1, Weijun Tong3, Joel Carpenter4, Jochen Schröder2, Magnus Karlsson2, and Peter A. Andrekson2
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, and School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg 41296, Sweden
  • 3State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC), Wuhan 430073, China
  • 4School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
  • show less
    DOI: 10.1364/PRJ.7.001354 Cite this Article Set citation alerts
    Jitao Gao, Elham Nazemosadat, Chen Yang, Songnian Fu, Ming Tang, Weijun Tong, Joel Carpenter, Jochen Schröder, Magnus Karlsson, Peter A. Andrekson. Design, fabrication, and characterization of a highly nonlinear few-mode fiber[J]. Photonics Research, 2019, 7(11): 1354 Copy Citation Text show less
    References

    [1] D. J. Richardson, J. M. Fini, L. E. Nelson. Space-division multiplexing in optical fibres. Nat. Photonics, 7, 354-362(2013).

    [2] R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, R. Lingle. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing. J. Lightwave Technol., 30, 521-531(2012).

    [3] C. Koebele, M. Salsi, L. Milord, R. Ryf, C. Bolle, P. Sillard, S. Bigo, G. Charlet. 40 km transmission of five mode division multiplexed data streams at 100  Gb/s with low MIMO-DSP complexity. 37th European Conference and Exhibition on Optical Communication, Th.13.C.3(2011).

    [4] R. Stolen. Phase-matched-stimulated four-photon mixing in silica-fiber waveguides. IEEE J. Quantum Electron., 11, 100-103(1975).

    [5] N. Zhao, B. Huang, R. Amezcua-Correa, X. Li, G. Li. Few-mode fiber optical parametric amplifier. Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OTu2D.5(2013).

    [6] M. Guasoni. Generalized modulational instability in multimode fibers: wideband multimode parametric amplification. Phys. Rev. A, 92, 033849(2015).

    [7] E. Nazemosadat, A. Lorences-Riesgo, M. Karlsson, P. A. Andrekson. Design of highly nonlinear few-mode fiber for C-band optical parametric amplification. J. Lightwave Technol., 35, 2810-2817(2017).

    [8] Y. Xiao, R.-J. Essiambre, M. Desgroseilliers, A. M. Tulino, R. Ryf, S. Mumtaz, G. P. Agrawal. Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers. Opt. Express, 22, 32039-32059(2014).

    [9] R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, R. Lingle. Experimental investigation of inter-modal four-wave mixing in few-mode fibers. IEEE Photon. Technol. Lett., 25, 539-542(2013).

    [10] S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, F. Parmigiani. Inter-modal four-wave mixing study in a two-mode fiber. Opt. Express, 24, 30338-30349(2016).

    [11] O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, F. Parmigiani. Bandwidth enhancement of inter-modal four wave mixing Bragg scattering by means of dispersion engineering. APL Photon., 4, 022902(2019).

    [12] J. Demas, L. Rishøj, X. Liu, G. Prabhakar, S. Ramachandran. Intermodal group-velocity engineering for broadband nonlinear optics. Photon. Res., 7, 1-7(2019).

    [13] H. Zhang, M. Bigot-Astruc, L. Bigot, P. Sillard, J. Fatome. Multiple modal and wavelength conversion process of a 10-Gbit/s signal in a 6-LP-mode fiber. Opt. Express, 27, 15413-15425(2019).

    [14] G. Rademacher, R. Ryf, N. K. Fontaine, H. Chen, R. M. Jopson, R. Essiambre, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, R. Lingle. Experimental investigation of parametric mode and wavelength conversion in a 4.7 km few-mode fiber. European Conference on Optical Communication (ECOC), 1(2018).

    [15] E. Nazemosadat, A. Mafi. Design considerations for multicore optical fibers in nonlinear switching and mode-locking applications. J. Opt. Soc. Am. B, 31, 1874-1878(2014).

    [16] G. Lopez-Galmiche, Z. S. Eznaveh, M. A. Eftekhar, J. A. Lopez, L. G. Wright, F. Wise, D. Christodoulides, R. A. Correa. Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm. Opt. Lett., 41, 2553-2556(2016).

    [17] L. G. Wright, D. N. Christodoulides, F. W. Wise. Controllable spatiotemporal nonlinear effects in multimode fibres. Nat. Photonics, 9, 306-310(2015).

    [18] H. Pourbeyram, E. Nazemosadat, A. Mafi. Detailed investigation of intermodal four-wave mixing in SMF-28: blue-red generation from green. Opt. Express, 23, 14487-14500(2015).

    [19] J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, D. Jakobsen. Intermodal four-wave mixing in a higher-order-mode fiber. Appl. Phys. Lett., 101, 161106(2012).

    [20] E. Nazemosadat, H. Pourbeyram, A. Mafi. Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers. J. Opt. Soc. Am. B, 33, 144-150(2016).

    [21] R. Dupiol, A. Bendahmane, K. Krupa, J. Fatome, A. Tonello, M. Fabert, V. Couderc, S. Wabnitz, G. Millot. Intermodal modulational instability in graded-index multimode optical fibers. Opt. Lett., 42, 3419-3422(2017).

    [22] A. Bendahmane, K. Krupa, A. Tonello, D. Modotto, T. Sylvestre, V. Couderc, S. Wabnitz, G. Millot. Seeded intermodal four-wave mixing in a highly multimode fiber. J. Opt. Soc. Am. B, 35, 295-301(2018).

    [23] K. Inoue. Four-wave mixing in an optical fiber in the zero-dispersion wavelength region. J. Lightwave Technol., 10, 1553-1561(1992).

    [24] G. P. Agrawal. Nonlinear Fiber Optics(2007).

    [25] R. H. Stolen, J. E. Bjorkholm, A. Ashkin. Phase-matched three-wave mixing in silica fiber optical waveguides. Appl. Phys. Lett., 24, 308-310(1974).

    [26] C. J. McKinstrie, S. Radic, M. G. Raymer. Quantum noise properties of parametric amplifiers driven by two pump waves. Opt. Express, 12, 5037-5066(2004).

    [27] G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, N. Wada. Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear FMF. Optical Fiber Communication Conference (OFC), W1C.4(2019).

    [28] K. Nakajima, M. Ohashi. Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers. IEEE Photon. Technol. Lett., 14, 492-494(2002).

    [29] K. Uesaka, K. K. Y. Wong, M. E. Marhic, L. G. Kazovsky. Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments. IEEE J. Sel. Top. Quantum Electron., 8, 560-568(2002).

    [30] J. Carpenter, B. C. Thomsen, T. D. Wilkinson. Degenerate mode-group division multiplexing. J. Lightwave Technol., 30, 3946-3952(2012).

    [31] J. Carpenter, B. J. Eggleton, J. Schröder. 110×110 optical mode transfer matrix inversion. Opt. Express, 22, 96-101(2014).

    [32] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 1, 1-57(2009).

    [33] Y. Yang, J. Cui, S. Fu, M. Tang, D. Liu. All-fiber flexible generation of the generalized cylindrical vector beam (CVB) over the C-band. IEEE J. Sel. Top. Quantum Electron., 26, 4500307(2020).

    [34] J. Cheng, M. E. V. Pedersen, K. Wang, C. Xu, L. Grüner-Nielsen, D. Jakobsen. Time-domain multimode dispersion measurement in a higher-order-mode fiber. Opt. Lett., 37, 347-349(2012).

    [35] J. Su, X. Dong, C. Lu. Characteristics of few mode fiber under bending. IEEE J. Sel. Top. Quantum Electron., 22, 139-145(2016).

    [36] A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, O. A. Levring. Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm. Opt. Lett., 21, 1966-1968(1996).

    [37] K. Krupa, A. Tonello, V. V. Kozlov, V. Couderc, P. D. Bin, S. Wabnitz, A. Barthélémy, L. Labonté, S. Tanzilli. Bragg-scattering conversion at telecom wavelengths towards the photon counting regime. Opt. Express, 20, 27220-27225(2012).

    [38] M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, D. J. Richardson. Intermodal four-wave mixing and parametric amplification in kilometer-long multimode fibers. J. Lightwave Technol., 35, 5296-5305(2017).

    [39] M. Esmaeelpour, R. Essiambre, N. K. Fontaine, R. Ryf, J. Toulouse, Y. Sun, R. Lingle. Power fluctuations of intermodal four-wave mixing in few-mode fibers. J. Lightwave Technol., 35, 2429-2435(2017).

    Jitao Gao, Elham Nazemosadat, Chen Yang, Songnian Fu, Ming Tang, Weijun Tong, Joel Carpenter, Jochen Schröder, Magnus Karlsson, Peter A. Andrekson. Design, fabrication, and characterization of a highly nonlinear few-mode fiber[J]. Photonics Research, 2019, 7(11): 1354
    Download Citation