• Journal of Infrared and Millimeter Waves
  • Vol. 38, Issue 2, 245 (2019)
LI Yu-Lian1、2、*, SUN Xue-Jin1, ZHAO Shi-Jun1, and JI Wen-Ming1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2019.02.019 Cite this Article
    LI Yu-Lian, SUN Xue-Jin, ZHAO Shi-Jun, JI Wen-Ming. Analysis of snowfall′s microphysical process from Doppler spectrum using Ka-band millimeter-wave cloud radar[J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 245 Copy Citation Text show less
    References

    [1] CHEN Yi-Chen, JIN Yong-Li, DING De-Ping, et al. Preliminary analysis on the application of millimeter wave cloud radar in snow observation[J]. Chinese Journal of Atmospheric Sciences

    [2] Kollias P, Clothiaux E E, Albrecht B A, et al. The atmospheric radiation measurement program cloud profiling radars: An evaluation of signal processing and sampling strategies[J]. Journal of Atmospheric & Oceanic Technology, 2005, 22(7):930-948.

    [3] Moran K P, Martner B E, Post M J, et al. An unattended cloud-profiling radar for use in climate research.[J]. Bulletin of the American Meteorological Society, 1998, 79(3):443-455.

    [4] Hamazu K, Hashiguchi H, Wakayama T, et al. A 35 GHz scanning Doppler radar for fog observations[J]. Journal of Atmospheric & Oceanic Technology, 2003, 20(7):972-986.

    [6] Shupe M D, Kollias P, Matrosov S Y, et al. Deriving mixed-phase cloud properties from Doppler radar spectra[J]. Journal of Atmospheric & Oceanic Technology, 2004, 21(21):660-670.

    [7] Luke E P, Pavlos K, Shupe M D. Detection of supercooled liquid in mixed‐phase clouds using radar Doppler spectra[J]. Journal of Geophysical Research Atmospheres, 2012, 115(D19):201.

    [8] Oue M, Kollias P, Ryzhkov A, et al. Toward exploring the synergy between cloud radar polarimetry and Doppler spectral analysis in deep cold precipitating systems in the Arctic[J]. Journal of Geophysical Research Atmospheres, 2018, 123(5): 2797-2815.

    [9] Kneifel S, Kollias P, Battaglia A, et al. First observations of triple‐frequency radar Doppler spectra in snowfall: Interpretation and applications[J]. Geophysical Research Letters, 2016, 43(5):2225-2233.

    [10] WANG Liu-Liu, LIU Li-Ping, YU Ji-Zhou, et al. Microphysics and Dynamic characteristic analysis of freezing rain and snow observed by millimeter wave radar[J]. Meteorological Monthly

    [11] Pet?? T, O′Connor E J, Moisseev D, et al. BAECC: A field campaign to elucidate the impact of biogenic aerosols on clouds and climate[J]. Bulletin of the American Meteorological Society, 2016, 97(10):1909-1928.

    [12] Kneifel S, Lerber A, Tiira J, et al. Observed relations between snowfall microphysics and triple‐frequency radar measurements[J]. Journal of Geophysical Research Atmospheres, 2015, 120(12):6034-6055.

    [13] Lhnert U, Crewell S. Accuracy of cloud liquid water path from ground‐based microwave radiometry 1. Dependency on cloud model statistics[J]. Radio Science, 2003, 38(3):8041-8051.

    [14] Marchand R, Ackerman T, Westwater E R, et al. An assessment of microwave absorption models and retrievals of cloud liquid water using clear﹕ky data[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D24):4773-4783.

    [15] Hildebrand P H. Objective determination of the noise level in Doppler spectra[J]. Journal of Applied Meteorology, 1974, 13(7):808-811.

    [16] ZHANG Yong-Tao, JIA Yan-Ming. Analysis and program implementation of least squares polynomial curve fitting[J]. Computer & Digital Engineering.

    [17] Kollias P, Albrecht B A, Lhermitte R, et al. Radar observations of updrafts, downdrafts, and turbulence in fair-weather cumuli.[J]. Journal of the Atmospheric Sciences, 2001, 58(13):1750-1766.

    [18] Shupe M D. A ground-based multisensor cloud phase classifier[J]. Geophysical Research Letters, 2007, 34(22):48-55.

    [20] Sassen K, Liao L. Estimation of cloud content by W-band radar.[J]. Journal of Applied Meteorology, 2010, 35(6):932-938.

    [21] Straka J M, Zrni D S, Ryzhkov A V. Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations.[J]. Journal of Applied Meteorology, 2000, 39(8):1341-1372.

    [22] Kalesse H, Kollias P, Szyrmer W. On using the relationship between Doppler velocity and radar reflectivity to identify microphysical processes in midlatitudinal ice clouds[J]. Journal of Geophysical Research Atmospheres, 2013, 118(21):12-12,179.

    [23] Griggs D J, Choularton T W. The effect of rimer surface temperature on ice splinter production by the Hallett-Mossop process[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 112(474):1254-1256.-

    LI Yu-Lian, SUN Xue-Jin, ZHAO Shi-Jun, JI Wen-Ming. Analysis of snowfall′s microphysical process from Doppler spectrum using Ka-band millimeter-wave cloud radar[J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 245
    Download Citation