• Laser & Optoelectronics Progress
  • Vol. 55, Issue 2, 021008 (2018)
Linlin Guo* and Yuenan Li
Author Affiliations
  • School of Electrical Automation and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP55.021008 Cite this Article Set citation alerts
    Linlin Guo, Yuenan Li. Histopathological Image Classification Algorithm Based on Product of Experts[J]. Laser & Optoelectronics Progress, 2018, 55(2): 021008 Copy Citation Text show less
    References

    [1] Chen X T, Zhang F, Zhang Y F et al. Research on stenosis detection and quantification of coronary artery in CT angiography[J]. Laser & Optoelectronics Progress, 52, 080006(2015).

    [2] Li J W, Chen X D, Jia Z W et al. A coronary artery lumen segmentation algorithm based on ray casting[J]. Chinese Journal of Lasers, 42, 0804002(2015).

    [3] Zhao C, Chen X D, Zhang J C et al. Coronary lesion detection method based on one-class support vector machine[J]. Chinese Journal of Lasers, 44, 0504006(2017).

    [4] Gurcan M N, Boucheron L E, Can A et al. Histopathological image analysis: A review[J]. IEEE Reviews in Biomedical Engineering, 2, 147-171(2009). http://europepmc.org/articles/PMC2910932/

    [5] Madabhushi A. Digital pathology image analysis: Opportunities and challenges[J]. Imaging in Medicine, 1, 7-10(2009). http://www.ingentaconnect.com/content/fm/iim/2009/00000001/00000001/art00003

    [6] Gavrilovic M, Azar J C, Lindblad J et al. Blind color decomposition of histological images[J]. IEEE Transactions on Medical Imaging, 32, 983-994(2013). http://www.ncbi.nlm.nih.gov/pubmed/23322760

    [7] Lexe G, Monaco J, Doyle S et al. Towards improved cancer diagnosis and prognosis using analysis of gene expression data and computer aided imaging[J]. Experimental Biology & Medicine, 234, 860-879(2009). http://europepmc.org/abstract/med/19491367

    [8] Dundar M M, Badve S, Bilgin G et al. Computerized classification of intraductal breast lesions using histopathological images[J]. IEEE Transactions on Biomedical Engineering, 58, 1977-1984(2011). http://europepmc.org/abstract/MED/21296703

    [9] Tabesh A, Teverovskiy M, Pang H Y et al. Multifeature prostate cancer diagnosis and gleason grading of histological images[J]. IEEE Transactions on Medical Imaging, 26, 1366-1378(2007). http://ieeexplore.ieee.org/document/4336180/

    [10] Srinivas U, Mousavi H S, Monga V et al. Simultaneous sparsity model for histopathological image representation and classification[J]. IEEE Transactions on Medical Imaging, 33, 1163-1179(2014). http://europepmc.org/abstract/med/24770920

    [11] Fukuma K. Prasath V B S, Kawanaka H, et al. A study on feature extraction and disease stage classification for glioma pathology images[C]. IEEE International Conference on Fuzzy Systems, 16450006(2016).

    [12] Cao J J, Qin Z C, Jing J et al. An automatic breast cancer grading method in histopathological images based on pixel-, object-, and semantic-level features[C]. IEEE International Symposium on Biomedical Imaging, 1151-1154(2016).

    [13] Doyle S, Agner S, Madabhushi A et al. Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features[C]. IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 10054638(2008).

    [14] Orlov N, Shamir L, Macura T et al. WND-CHARM: Multi-purpose image classification using compound image transforms[J]. Pattern Recognition Letters, 29, 1684-1693(2008). http://europepmc.org/articles/PMC2573471/

    [15] Shamir L, Orlov N, Eckley D M et al. Wndchrm: An open source utility for biological image analysis[J]. Source Code for Biology and Medicine, 3, 13(2008). http://europepmc.org/abstract/med/18611266

    [16] Batool N. Detection and spatial analysis of hepatic steatosis in histopathology images using sparse linear models[C]. IEEE International Conference on Image Processing Theory Tools and Applications, 16602172(2016).

    [17] Hinton G E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 14, 1771-1800(2002). http://dl.acm.org/citation.cfm?id=639730

    [18] Welling M, Osindero S, Hinton G E. Learning sparse topographic representations with products of student-t distributions[C]. Advances in Neural Information Processing Systems, 1383-1390(2003).

    [19] Naik S, Doyle S, Agner S et al. Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology[C]. IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 10054585(2008).

    [20] Hinton G, Osindero S, Welling M et al. Unsupervised discovery of nonlinear structure using contrastive backpropagation[J]. Cognitive Science, 30, 725-731(2006). http://onlinelibrary.wiley.com/doi/10.1207/s15516709cog0000_76/full

    [21] Andrieu C, Freitas N D, Doucet A et al. An introduction to MCMC for machine learning[J]. Machine Learning, 50, 5-43(2003). http://www.bioone.org/servlet/linkout?suffix=bibr03&dbid=16&doi=10.5735%2F086.045.0504&key=10.1023%2FA%3A1020281327116

    [22] Wright J, Yang A Y, Sastry S S et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 31, 210-227(2009).

    Linlin Guo, Yuenan Li. Histopathological Image Classification Algorithm Based on Product of Experts[J]. Laser & Optoelectronics Progress, 2018, 55(2): 021008
    Download Citation