• Photonics Research
  • Vol. 6, Issue 5, B82 (2018)
Chawin Sitawarin1, Weiliang Jin1, Zin Lin2, and Alejandro W. Rodriguez1、*
Author Affiliations
  • 1Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
  • 2John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
  • show less
    DOI: 10.1364/PRJ.6.000B82 Cite this Article Set citation alerts
    Chawin Sitawarin, Weiliang Jin, Zin Lin, Alejandro W. Rodriguez. Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion [Invited][J]. Photonics Research, 2018, 6(5): B82 Copy Citation Text show less
    References

    [1] K. W. DeLong, R. Trebino, J. Hunter, W. E. White. Frequency-resolved optical gating with the use of second-harmonic generation. J. Opt. Soc. Am. B, 11, 2206-2215(1994).

    [2] M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, M. M. Fejer. Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate. Opt. Lett., 22, 1341-1343(1997).

    [3] T. F. Heinz, C. K. Chen, D. Ricard, Y. R. Shen. Spectroscopy of molecular monolayers by resonant second-harmonic generation. Phys. Rev. Lett., 48, 478-481(1982).

    [4] P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, D. Weyburne. Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs. Opt. Lett., 31, 71-73(2006).

    [5] K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, C. Lynch. Terahertz-wave generation in quasi-phase-matched GaAs. Appl. Phys. Lett., 89, 141119(2006).

    [6] R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, H. Weinfurter. Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments. Nat. Photonics, 4, 170-173(2010).

    [7] A. Vaziri, G. Weihs, A. Zeilinger. Experimental two-photon, three-dimensional entanglement for quantum communication. Phys. Rev. Lett., 89, 240401(2002).

    [8] S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, H. Zbinden. A photonic quantum information interface. Nature, 437, 116-120(2005).

    [9] S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett., 109, 147404(2012).

    [10] J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, G. Leuchs. Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys. Rev. Lett., 104, 153901(2010).

    [11] M. M. Fejer. Nonlinear optical frequency conversion. Phys. Today, 47, 25-32(1994).

    [12] M. Soljačić, J. D. Joannopoulos. Enhancement of nonlinear effects using photonic crystals. Nat. Mater., 3, 211-219(2004).

    [13] Y. Dumeige, P. Feron. Wispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation. Phys. Rev. A, 74, 063804(2006).

    [14] L.-A. Wu, M. Xiao, H. J. Kimble. Squeezed states of light from an optical parametric oscillator. J. Opt. Soc. Am. B, 4, 1465-1476(1987).

    [15] C. Simonneau, J. P. Debray, J. C. Harmand, P. Vidaković, D. J. Lovering, J. A. Levenson. Second-harmonic generation in a doubly resonant semiconductor microcavity. Opt. Lett., 22, 1775-1777(1997).

    [16] R. Paschotta, K. Fiedler, P. Kurz, J. Mlynek. Nonlinear mode coupling in doubly resonant frequency doublers. Appl. Phys. Lett., 58, 117-122(1994).

    [17] K. Koch, G. T. Moore. Singly resonant cavity-enhanced frequency tripling. J. Opt. Soc. Am. B, 16, 448-459(1999).

    [18] M. Liscidini, L. A. Andreani. Highly efficient second-harmonic generation in doubly resonant planar microcavities. Appl. Phys. Lett., 85, 1883-1885(2004).

    [19] K. Rivoire, S. Buckley, J. Vuckovic. Multiply resonant high quality photonic crystal nanocavities. Appl. Phys. Lett., 99, 013114(2011).

    [20] D. Ramirez, A. W. Rodriguez, H. Hashemi, J. D. Joannopoulos, M. Solijacic, S. G. Johnson. Degenerate four-wave mixing in triply-resonant nonlinear Kerr cavities. Phys. Rev. A, 83, 033834(2011).

    [21] Z. Lin, T. Alcorn, M. Loncar, S. Johnson, A. Rodriguez. High-efficiency degenerate four wave-mixing in triply. Phys. Rev. A, 89, 053839(2014).

    [22] W. H. P. Pernice, C. Xiong, C. Schuck, H. X. Tang. Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators. Appl. Phys. Lett., 100, 223501(2012).

    [23] Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, S. G. Johnson. High-efficiency second-harmonic generation in doubly-resonant χ(2) microring resonators. Opt. Express, 20, 7526-7543(2012).

    [24] K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, J. Vučković. Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power. Opt. Express, 17, 22609-22615(2009).

    [25] S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, J. Vučković. Multimode nanobeam cavities for nonlinear optics: high quality resonances separated by an octave. Opt. Express, 22, 26498-26509(2014).

    [26] A. Rodriguez, M. Soljačić, J. D. Joannopulos, S. G. Johnson. χ(2) and χ. Opt. Express, 15, 7303-7318(2007).

    [27] Z. Lin, X. Liang, M. Lončar, S. G. Johnson, A. W. Rodriguez. Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization. Optica, 3, 233-238(2016).

    [28] Z. Lin, M. Lončar, A. W. Rodriguez. Topology optimization of multi-track ring resonators and 2D microcavities for nonlinear frequency conversion(2017).

    [29] L. Goldberg, D. A. V. Kliner. Tunable UV generation at 286 nm by frequency tripling of a high-power mode-locked semiconductor laser. Opt. Lett., 20, 1640-1642(1995).

    [30] Y. Yelin, D. Silberberg. Laser scanning third-harmonic-generation microscopy in biology. Opt. Express, 5, 169-175(1999).

    [31] P. Pantazis, J. Maloney, D. Wu, S. E. Fraser. Second harmonic generating (SHG) nanoprobes for in vivo imaging. Proc. Natl. Acad. Sci. USA, 107, 14535-14540(2010).

    [32] D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, T. Jennewein. Direct generation of photon triplets using cascaded photon-pair sources. Nature, 466, 601-603(2010).

    [33] K. Rivoire, S. Buckley, F. Hatami, J. Vuckovic. Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities. Appl. Phys. Lett., 98, 263113(2011).

    [34] S. Buckley, M. Radulaski, K. Biermann, J. Vuckovic. Second harmonic generation in photonic crystal cavities in (111)-oriented GaAs(2013).

    [35] D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, D. L. Weidman. Nonlinear optical susceptibilities of high-index glasses. Appl. Phys. Lett., 54, 1293-1295(1989).

    [36] R. Ahmad, M. Soljacic, M. Ibanescu, T. Engeness, M. Skorobogatly, S. Johnson, O. Weisberg, Y. Fink, L. Pressman, W. King, E. Anderson, J. D. Joannopoulos. High index-contrast fiber waveguides and applications. U.S. patent(2004).

    [37] M. Lapine, I. V. Shadrivov, Y. S. Kivshar. Colloquium: nonlinear metamaterials. Rev. Mod. Phys., 86, 1093-1123(2014).

    [38] S. Campione, A. Benz, M. B. Sinclair, F. Capolino, I. Brener. Second harmonic generation from metamaterials strongly coupled to intersubband transitions in quantum wells. Appl. Phys. Lett., 104, 131104(2014).

    [39] J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alu, M. A. Belkin. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature, 511, 65-69(2014).

    [40] O. Wolf, S. Campione, A. Benz, A. P. Ravikumar, S. Liu, T. S. Luk, E. A. Kadlec, E. A. Shaner, J. F. Klem, M. B. Sinclair, I. Brener. Phased-array sources based on nonlinear metamaterial nanocavities. Nat. Commun., 6, 7667(2015).

    [41] K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, X. Zhang. Predicting nonlinear properties of metamaterials from the linear response. Nat. Mater., 14, 379-383(2015).

    [42] Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, J. Valentine. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett., 15, 7388-7393(2015).

    [43] N. Segal, S. Keren-Zur, N. Hendler, T. Ellenbogen. Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photonics, 9, 180-184(2015).

    [44] J. Butet, P.-F. Brevet, O. J. Martin. Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano, 9, 10545-10562(2015).

    [45] A. Bétourné, Y. Quiquempois, G. Bouwmans, M. Douay. Design of a photonic crystal fiber for phase-matched frequency doubling or tripling. Opt. Express, 16, 14255-14262(2008).

    [46] F. G. Omenetto, A. J. Taylor, M. D. Moores, J. Arriaga, J. C. Knight, W. J. Wadsworth, P. St. J. Russell. Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber. Opt. Lett., 26, 1158-1160(2001).

    [47] B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, T. F. Krauss. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat. Photonics, 3, 206-210(2009).

    [48] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2, 17010(2017).

    [49] S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, I. Brener. Resonantly enhanced second-harmonic generation using III--V semiconductor all-dielectric metasurfaces. Nano Lett., 16, 5426-5432(2016).

    [50] O. Wolf, A. A. Allerman, X. Ma, J. R. Wendt, A. Y. Song, E. A. Shaner, I. Brener. Enhanced optical nonlinearities in the near-infrared using III-nitride heterostructures coupled to metamaterials. Appl. Phys. Lett., 107, 151108(2015).

    [51] M. Tymchenko, J. S. Gomez-Diaz, J. Lee, N. Nookala, M. A. Belkin, A. Alù. Gradient nonlinear pancharatnam-berry metasurfaces. Phys. Rev. Lett., 115, 207403(2015).

    [52] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade. Photonic Crystals: Molding the Flow of Light(2008).

    [53] S. Molesky, Z. Lin, A. Piggot, W. Jin, J. Vuckovic, A. W. Rodriguez. Outlook for inverse design in nanophotonics(2018).

    [54] W. J. Kim, J. D. O’Brien. Optimization of a two-dimensional photonic-crystal waveguide branch by simulated annealing and the finite-element method. J. Opt. Soc. Am. B, 21, 289-295(2004).

    [55] B. S. Darki, N. Granpayeh. Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method. Opt. Commun., 283, 4099-4103(2010).

    [56] M. Minkov, V. Savona. Automated optimization of photonic crystal slab cavities. Sci. Rep., 4, 5124(2014).

    [57] A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, M. Lipson. Spontaneous emergence of periodic patterns in a biologically inspired simulation of photonic structures. Phys. Rev. Lett., 96, 143904(2006).

    [58] J. Jensen, O. Sigmund. Topology optimization for nano-photonics. Laser Photon. Rev., 5, 308-321(2011).

    [59] N. Aage, E. Andreassen, B. S. Lazarov, O. Sigmund. Giga-voxel computational morphogenesis for structural design. Nature, 550, 84-86(2017).

    [60] X. Liang, S. G. Johnson. Formulation for scalable optimization of microcavities via the frequency-averaged local density of states. Opt. Express, 21, 30812-30841(2013).

    [61] D. Liu, L. H. Gabrielli, M. Lipson, S. G. Johnson. Transformation inverse design. Opt. Express, 21, 14223-14243(2013).

    [62] A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, J. Vuckovic. Inverse design and implementation of a wavelength demultiplexing grating coupler. Sci. Rep., 4, 7210(2014).

    [63] H. Men, K. Y. K. Lee, R. M. Freund, J. Peraire, S. G. Johnson. Robust topology optimization of three-dimensional photonic-crystal band-gap structures(2014).

    [64] A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, J. Vuckovic. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics, 9, 374-377(2015).

    [65] B. Shen, P. Wang, R. Menon. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photonics, 9, 378-382(2015).

    [66] G. Strang. Computational Science and Engineering, 791(2007).

    [67] J. D. Deaton, R. V. Grandhi. A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim., 49, 1-38(2014).

    [68] M. P. Bendsøe, O. Sigmund, M. P. Bendsøe, O. Sigmund. Topology Optimization by Distribution of Isotropic Material(2004).

    [69] M. Y. Wang, X. Wang, D. Guo. A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng., 192, 227-246(2003).

    [70] J. Haslinger, R. A. Mäkinen. Introduction to Shape Optimization: Theory, Approximation, and Computation(2003).

    [71] K. Svanberg. A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim., 12, 555-573(2002).

    [72] F. Wang, O. Sigmund. Optimization of photonic crystal cavities. International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 39-40(2017).

    [73] R. W. Boyd. Nonlinear Optics(1992).

    [74] A. Taflove, S. C. Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method(2000).

    [75] B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature, 420, 650-653(2002).

    [76] X. Feng, T. Monro, P. Petropoulos, V. Finazzi, D. Hewak. Solid microstructured optical fiber. Opt. Express, 11, 2225-2230(2003).

    [77] V. Grubsky, A. Savchenko. Glass micro-fibers for efficient third harmonic generation. Opt. Express, 13, 6798-6806(2005).

    [78] G. P. Agrawal. Fiber-Optic Communication Systems, 222(2012).

    [79] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [80] L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, T. Ellenbogen. Nonlinear surface lattice resonance in plasmonic nanoparticle arrays. Phys. Rev. Lett., 118, 243904(2017).

    [81] S. Keren-Zur, O. Avayu, L. Michaeli, T. Ellenbogen. Nonlinear beam shaping with plasmonic metasurfaces. ACS Photon., 3, 117-123(2015).

    [82] A. Krasnok, M. Tymchenko, A. Alù. Nonlinear metasurfaces: a paradigm shift in nonlinear optics(2017).

    [83] W. Bond. Measurement of the refractive indices of several crystals. J. Appl. Phys., 36, 1674-1677(1965).

    [84] I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, R. Ito. Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B, 14, 2268-2294(1997).

    CLP Journals

    [1] Weibao He, Mingyu Tong, Zhongjie Xu, Yuze Hu, Xiang’ai Cheng, Tian Jiang. Ultrafast all-optical terahertz modulation based on an inverse-designed metasurface[J]. Photonics Research, 2021, 9(6): 1099

    [2] Chawin Sitawarin, Weiliang Jin, Zin Lin, Alejandro W. Rodriguez. Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion [Invited]: publisher’s note[J]. Photonics Research, 2019, 7(4): 493

    Chawin Sitawarin, Weiliang Jin, Zin Lin, Alejandro W. Rodriguez. Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion [Invited][J]. Photonics Research, 2018, 6(5): B82
    Download Citation