• Acta Optica Sinica
  • Vol. 36, Issue 11, 1127001 (2016)
Ji Muyao*, Duan Yafan, Niu Yueping, and Gong Shangqing
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201636.1127001 Cite this Article Set citation alerts
    Ji Muyao, Duan Yafan, Niu Yueping, Gong Shangqing. Cavity Ringdown Spectroscopy Based on V-Type Electromagnetically Induced Transparency[J]. Acta Optica Sinica, 2016, 36(11): 1127001 Copy Citation Text show less
    References

    [1] O′Keefe A, Deacon D A G. Cavity ringdown optical spectrometer for absorption measurements using pulsed laser source[J]. Rev Sci Instrum, 1988, 59(12): 2544-2551.

    [2] Romanini D, Lehaman K K. Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and night stretching quanta[J]. J Chem Phys, 1993, 99: 6287-6301.

    [3] Sun Liqin, Chen Bing, Kan Ruifeng, et al. High-sensitivity rapidly swept cavity ringdown spectroscopy for monitoring ambient CH4[J]. Acta Optica Sinica, 2015, 35(9): 0930002.

    [4] O′Keefe A, Scherer J J, Cooksy A L, et al. Cavity ring down dye laser spectroscopy of jet-cooled metal cluster: Cu2 and Cu3[J]. Chem Phys Lett, 1990, 172(3-4): 214-218.

    [5] Gong Yuan, Li Bincheng. Continuous-wave cavity ring-down technique for accurate measurement of high reflectivity[J]. Chinese J Lasers, 2006, 33(9): 1247-1250.

    [6] Li Zhigang, Zhang Yuchi, Zhang Pengfei, et al. Measurement of ultra-low loss mirrors by cavity ring-down technique with laser frequency sweeping[J]. Acta Optica Sinica, 2009, 29(3): 718-722.

    [7] Yu T, Lin M C. Kinetics of phenyl radical reaction studied by the cavity-ring-down method[J]. J Am Chem Soc, 1993, 115(10): 4371-4372.

    [8] Wang C, Srivastava N, Dibble T S. Observation and quantification of OH radicals in the far down stream part of an atmospheric microwave plasma jet using cavity ringdown spectroscopy[J]. Appl Phys Lett, 2009, 95: 051501.

    [9] Sahay P, Wang C. Absolute measurements of electron impact excitation cross-sections of atoms using cavity ringdown spectroscopy[J]. Radiat Phys Chem, 2015, 106: 165-169.

    [10] Nikolaev I V, Ochkin V N, Spiridonov M V, et al. Diode ring-down spectroscopy without intensity modulation in an off-axis multipass cavity[J]. Spectrochim Acta A, 2007, 66(4-5): 832-835.

    [11] Ye J, Hall J L. Cavity ringdown heterodyne spectroscopy: High sensitivity with microwatt light power[J]. Phys Rev A, 2000, 61: 061802.

    [12] Spence T G, Harb C C, Paldus B A, et al. A laser-locked cavity ring-down spectrometer employing an analog detection scheme[J]. Rev Sci Instrum, 2000, 71(2): 347-353.

    [13] Levenson M D, Paldus B A, Spence T G, et al. Frequency switched heterodyne cavity ringdown spectroscopy[J]. Opt Lett, 2000, 25(12): 920-922.

    [14] Boller K J, Imamogˇlu A, Harris S E. Observation of electromagnetically induced transparency[J]. Phys Rev Lett, 1991, 66(20): 2593-2596.

    [15] Wang Yebing, Cong Dongliang, Xu Peng, et al. Observation of atomic coherence in intercombination transition line of strontium atom[J]. Acta Optica Sinica, 2013, 33(4): 0427001.

    [16] Hau L V, Harris S E, Dutton Z, et al. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 1999, 397: 594-598.

    [17] Heinze G, Hubrich C, Halfmann T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute[J]. Phys Rev Lett, 2013, 111: 033601.

    [18] Wang H, Goorskey D J, Burrkett W H, et al. Cavity-linewidth narrowing by means of electromagnetically induced transparency[J]. Opt Lett, 2000, 25(23): 1732-1734.

    [19] Lauprêtre T, Proux C, Ghosh R, et al. Photon lifetime in a cavity containing a slow-light medium[J]. Opt Lett, 2011, 36(9): 1551-1553.

    [20] Fulton D J, Shepherd S, Moseley R R, et al. Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems[J]. Phys Rev A, 1995, 52(3): 589-595.

    [21] Jiang W, Chen Q, Zhang Y, et al. Optical pumping-assisted electromagnetically induced transparency[J]. Phys Rev A, 2006, 73: 053804.

    [22] Steck D A. Rubidium 87 D line data[A/OL]. (2015-01-13)[2016-02-02]. http://steck.us/alkalidata.

    CLP Journals

    [1] Jiabao Wu, Shicheng Zhang, Yiqi Hu, Gongwei Lin, Yueping Niu, Shangqing Gong. Intracavity Electromagnetically Induced Transparency and Its Linewidth Under a Weak Control Field[J]. Acta Optica Sinica, 2018, 38(7): 0727002

    [2] Han Yuhong, Che Shaona, Wang Dan, Zhou Haitao. Electromagnetically Induced Gain Based on Degenerate Two-Level Atomic System[J]. Acta Optica Sinica, 2018, 38(3): 302001

    Ji Muyao, Duan Yafan, Niu Yueping, Gong Shangqing. Cavity Ringdown Spectroscopy Based on V-Type Electromagnetically Induced Transparency[J]. Acta Optica Sinica, 2016, 36(11): 1127001
    Download Citation