• Photonics Research
  • Vol. 5, Issue 2, A13 (2017)
Benjamin D. Mangum, Tiemo S. Landes, Brian R. Theobald, and Juanita N. Kurtin*
Author Affiliations
  • Pacific Light Technologies, 2828 SW Corbett Ave., Portland, Oregon 97201, USA
  • show less
    DOI: 10.1364/PRJ.5.000A13 Cite this Article Set citation alerts
    Benjamin D. Mangum, Tiemo S. Landes, Brian R. Theobald, Juanita N. Kurtin. Exploring the bounds of narrow-band quantum dot downconverted LEDs[J]. Photonics Research, 2017, 5(2): A13 Copy Citation Text show less
    References

    [1] J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, K. F. Jensen. Full color emission from iivi semiconductor quantum dot–polymer composites. Adv. Mater., 12, 1102-1105(2000).

    [2] V. L. Colvin, M. C. Schlamp, A. P. Alivisatos. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 370, 354-357(1994).

    [3] N. Bardsley, S. Bland, M. Hansen, L. Pattison, M. Pattison, K. Stober, M. Yamada. Solid-state lighting R&D plan(2016).

    [4] K. T. Shimizu, M. Böhmer, D. Estrada, S. Gangwal, S. Grabowski, H. Bechtel, E. Kang, K. Vampola, D. Chamberlin, O. B. Shchekin, J. Bhardwaj. Towards commercial realization of quantum dot based white LEDs for general illumination. Photon. Res., 5, A1-A6(2017).

    [5] J. P. Park, J.-J. Lee, S.-W. Kim. Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process. Sci. Rep., 6, 30094(2016).

    [6] A. Narayanaswamy, L. F. Feiner, P. J. van der Zaag. Temperature dependence of the photoluminescence of InP/ZnS quantum dots. J. Phys. Chem. C, 112, 6775-6780(2008).

    [7] M. J. Anc, N. L. Pickett, N. C. Gresty, J. A. Harris, K. C. Mishra. Progress in non-Cd quantum dot development for lighting applications. ECS J. Solid State Sci. Technol., 2, R3071-R3082(2013).

    [8] S. J. Yang, J. H. Oh, S. Kim, H. Yang, Y. R. Do. Realization of InP/ZnS quantum dots for green, amber and red down-converted LEDs and their color-tunable, four-package white LEDs. J. Mater. Chem. C, 3, 3582-3591(2015).

    [9] S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, P. Reiss. Chemistry of InP nanocrystal syntheses. Chem. Mater., 28, 2491-2506(2016).

    [10] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi. (CdSe)ZnS coreshell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B, 101, 9463-9475(1997).

    [11] Y. P. Varshni. Temperature dependence of the energy gap in semiconductors. Physica, 34, 149-154(1967).

    [12] B. D. Mangum, Y. Ghosh, J. A. Hollingsworth, H. Htoon. Disentangling the effects of clustering and multi-exciton emission in second-order photon correlation experiments. Opt. Express, 21, 7419-7426(2013).

    [13] G. Nair, J. Zhao, M. G. Bawendi. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano. Lett., 11, 1136-1140(2011).

    [14] S. A. Empedocles, M. G. Bawendi. Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots. Science, 278, 2114-2117(1997).

    [15] R. G. Neuhauser, K. T. Shimizu, W. K. Woo, S. A. Empedocles, M. G. Bawendi. Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots. Phys. Rev. Lett., 85, 3301-3304(2000).

    [16] . Nichia Product Page NF2L757G-V1F1(2016).

    [17] T. Erdem, S. Nizamoglu, X. W. Sun, H. V. Demir. A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores. Opt. Express, 18, 340-347(2010).

    [18] P. Zhong, G. He, M. Zhang. Optimal spectra of white light-emitting diodes using quantum dot nanophosphors. Opt. Express, 20, 9122-9134(2012).

    [19] Y. Ohno. Spectral design considerations for white LED color rendering. Opt. Eng., 44, 111302(2005).

    [20] P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, W. Schnick. Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material. Nat. Mater., 13, 891-896(2014).

    [21] W. Davis, Y. Ohno. Color quality scale. Opt. Eng., 49, 033602(2010).

    [22] W. Davis, Y. Ohno. Toward an improved color rendering metric. Proc. SPIE, 5941, 59411G(2005).

    [23] Z. Luo, D. Xu, S. T. Wu. Emerging quantum-dots-enhanced LCDs. J. Disp. Technol., 10, 526-539(2014).

    [24] J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, S. Coe-Sullivan. Quantum dots: the ultimate down-conversion material for LCD displays. J. Soc. Inf. Disp., 23, 294-305(2015).

    [25] K. Masaoka, Y. Nishida. Metric of color-space coverage for wide-gamut displays. Opt. Express, 23, 7802-7808(2015).

    [26] R. Zhu, Z. Luo, H. Chen, Y. Dong, S.-T. Wu. Realizing Rec. 2020 color gamut with quantum dot displays. Opt. Express, 23, 23680-23693(2015).

    [27] . Samsung TV Blog(2016).

    [28] . Wide Color Gamut Coverage of TVs(2016).

    [29] J. Ho. Achieving BT. 2020 color gamut quantum dots vs. lasers(2016).

    CLP Journals

    [1] Shudong Yu, Yong Tang, Zongtao Li, Kaihang Chen, Xinrui Ding, Binhai Yu. Enhanced optical and thermal performance of white light-emitting diodes with horizontally layered quantum dots phosphor nanocomposites[J]. Photonics Research, 2018, 6(2): 90

    [2] Bega Karadza, Hannes Van Avermaet, Leila Mingabudinova, Zeger Hens, Youri Meuret. Efficient, high-CRI white LEDs by combining traditional phosphors with cadmium-free InP/ZnSe red quantum dots[J]. Photonics Research, 2022, 10(1): 155

    Benjamin D. Mangum, Tiemo S. Landes, Brian R. Theobald, Juanita N. Kurtin. Exploring the bounds of narrow-band quantum dot downconverted LEDs[J]. Photonics Research, 2017, 5(2): A13
    Download Citation