• Acta Optica Sinica
  • Vol. 43, Issue 5, 0530001 (2023)
Fan Liao1, Xiaoying Cui2, Chungang Min2、*, and Aimin Ren3、**
Author Affiliations
  • 1Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • 2Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • 3Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, Jilin, China
  • show less
    DOI: 10.3788/AOS221676 Cite this Article Set citation alerts
    Fan Liao, Xiaoying Cui, Chungang Min, Aimin Ren. Theoretical Investigation of Hole and Electron Transport Properties for Hydroxy-Tetraphenylimidazole Derivatives[J]. Acta Optica Sinica, 2023, 43(5): 0530001 Copy Citation Text show less
    Schematic diagram of designed molecular structures
    Fig. 1. Schematic diagram of designed molecular structures
    Kohn-Sham frontier orbitals for HPI-TPA, HPI-PCz, HPI-DMAC, HPI-PTZ, HPI-PXZ and HPI-InPz predicted by PBE0/6-31G(d, p) method
    Fig. 2. Kohn-Sham frontier orbitals for HPI-TPA, HPI-PCz, HPI-DMAC, HPI-PTZ, HPI-PXZ and HPI-InPz predicted by PBE0/6-31G(d, p) method
    Absorption spectra simulated by Gaussian function
    Fig. 3. Absorption spectra simulated by Gaussian function
    DerivativeAbsorption spectrumEmission spectrum
    Experiment16B3LYPPBE0CAM-B3LYPExperiment16B3LYPPBE0CAM-B3LYP
    HPI-TPA338364350302402478448351
    HPI-PCz339381358285490540498358
    Table 1. Absorption and emission spectra of HPI-TPA and HPI-PCz in experimental and theoretical calculation obtained by combining B3LYP, PBE0 and CAM-B3LYP with 6-31G(d, p) basis set
    SegmentOrbitalHPI-TPAHPI-PCzHPI-DMACHPI-PTZHPI-PXZHPI-InPz
    HPIHOMO-297.02.599.899.999.899.9
    HOMO-17.03.60000
    HOMO1.099.3000.10
    LUMO49.453.454.353.053.253.1
    LUMO+156.258.059.756.457.656.7
    LUMO+292.586.786.586.586.387.3
    LUMO+318.40.167.423.118.212.0
    LUMO+60.420.491.479.689.04.0
    R-upHOMO-23.085.30.20.10.20
    HOMO-192.811.50100.0100.0100.0
    HOMO0.20.5100.0000
    LUMO7.923.024.524.923.823.5
    LUMO+133.318.616.718.718.619.2
    LUMO+26.710.610.411.210.610.1
    LUMO+375.599.919.611.778.686.1
    LUMO+699.647.56.015.17.595.6
    R-downHOMO-2012.20000
    HOMO-10.284.9100.0000
    HOMO98.80.20100.099.9100.0
    LUMO42.723.621.222.123.023.4
    LUMO+110.523.423.524.823.824.1
    LUMO+20.82.73.12.33.12.6
    LUMO+36.1013.065.23.21.9
    LUMO+6032.12.65.33.50.3
    Table 2. Contribution of electron densities of different segments to orbitals in HPI-TPA, HPI-PCz, HPI-DMAC, HPI-PTZ, HPI-PXZ and HPI-InPz
    CompoundHPI-TPAHPI-PCzHPI-DMACHPI-PTZHPI-PXZHPI-InPz
    EHOMO-5.27-5.56-5.24-5.29-4.98-4.81
    ELUMO-1.12-1.46-1.46-1.56-1.56-1.57
    ΔEH‑L4.154.103.783.733.423.24
    Table 3. HOMO energy, LUMO energy and HOMO-LUMO energy gap of studied compounds
    CompoundIP,vIP,aPHEEA,vEA,aPEEλholeλelectron
    HPI-TPA6.516.015.980.340.500.770.530.43
    HPI-PCz6.406.356.290.500.760.990.110.49
    HPI-DMAC6.096.015.980.490.760.990.110.50
    HPI-PTZ6.145.955.750.580.851.090.390.51
    HPI-PXZ5.875.815.760.580.851.090.110.51
    HPI-InPz5.605.555.490.610.871.110.110.50
    Table 4. Ionization potentials, electron affinities, extraction potentials and reorganization energies for studied compounds
    CompoundElectronic transitionWavelength /nmfMain configuration
    HPI-TPAS0→S1350(338)160.9385HOMO-1→LUMO(75.8%)
    HOMO→LUMO+1(15.3%)
    S0→S23420.2341HOMO-2→LUMO(11.8%)
    HOMO→LUMO(77.5%)
    S0→S33400.1554HOMO-2→LUMO(83.4%)
    HOMO→LUMO(10.0%)
    HPI-PCzS0→S13580.0043HOMO→LUMO(98.7%)
    S0→S2340(339)120.1363HOMO-2→LUMO(5.3%)
    HOMO-1→LUMO(13.5%)
    HOMO→LUMO+1(73.5%)
    S0→S33380.4745HOMO-2→LUMO(47.6%)
    HOMO-1→LUMO(16.0%)
    HOMO-1→LUMO+1(12.2%)
    HOMO→LUMO+1(18.9%)
    HPI-DMACS0→S13980.0007HOMO→LUMO(81.3%)
    HOMO→LUMO+1(11.5%)
    S0→S23810.0007HOMO-1→LUMO(71.3%)
    HOMO-1→LUMO+1(23.4%)
    S0→S33580.0046HOMO-2→LUMO(98.8%)
    S0→S103090.2398HOMO-2→LUMO+2(93.7%)
    HPI-PTZS0→S13970.0002HOMO→LUMO(72.9%)
    HOMO→LUMO+1(21.7%)
    S0→S23930.0001HOMO-1→LUMO(80.3%)
    HOMO-1→LUMO+1(12.7%)
    S0→S33630.0038HOMO-2→LUMO(98.9%)
    S0→S103100.1613HOMO-2→LUMO+2(61.1%)
    HOMO-1→LUMO+2(28.6%)
    HPI-PXZS0→S14440.0186HOMO→LUMO(74.1%)
    S0→S24420.0012HOMO-1→LUMO(79.4%)
    HOMO-1→LUMO+1(13.8%)
    S0→S33910.0014HOMO→LUMO(16.5%)
    HOMO→LUMO+1(81.7%)
    S0→S143100.2415HOMO-2→LUMO+2(92.7%)
    HPI-InPzS0→S14660.0043HOMO→LUMO(77.5%)
    HOMO→LUMO+1(18.5%)
    S0→S24620.0049HOMO-1→LUMO(81.9%)
    HOMO-1→LUMO+1(12.6%)
    S0→S34110.0006HOMO→LUMO(20.2%)
    HOMO→LUMO+1(78.2%)
    S0→S93570.1086HOMO-1→LUMO+3(11.9%)
    HOMO-1→LUMO+6(66.7%)
    Table 5. Absorption spectra, oscillator strengths and main transition configurations obtained by TD PBE0/6-31G(d, p) method
    CompoundWavelength /nmfMain configuration
    HPI-TPA448(402)160.1348HOMO→LUMO(96.8%)
    HPI-PCz498(490)160.0022HOMO→LUMO(99.5%)
    HPI-DMAC5020HOMO→LUMO(96.9%)
    HPI-PTZ6050HOMO→LUMO(97.3%)
    HPI-PXZ6000HOMO→LUMO(97.0%)
    HPI-InPz6430HOMO→LUMO(97.3%)
    Table 6. Emission wavelengths, oscillator strengths, main transition orbitals and transition coefficients of studied compounds
    Fan Liao, Xiaoying Cui, Chungang Min, Aimin Ren. Theoretical Investigation of Hole and Electron Transport Properties for Hydroxy-Tetraphenylimidazole Derivatives[J]. Acta Optica Sinica, 2023, 43(5): 0530001
    Download Citation