• Acta Optica Sinica
  • Vol. 38, Issue 11, 1122003 (2018)
Dongwei Ni1、2、*, Xuyang Li1、*, Mingyang Yang1、2, and Zhiguang Ren3
Author Affiliations
  • 1 Laboratory of Space Optics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Shaanxi 710119, China
  • 2 University of Chinese Academy of Sciences, Beijing 100049, China
  • 3 School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
  • show less
    DOI: 10.3788/AOS201838.1122003 Cite this Article Set citation alerts
    Dongwei Ni, Xuyang Li, Mingyang Yang, Zhiguang Ren. Large Field of View Space-Based Optical Detection System Based on Freeform Surfaces[J]. Acta Optica Sinica, 2018, 38(11): 1122003 Copy Citation Text show less
    Structural diagram of space-based detection optical system
    Fig. 1. Structural diagram of space-based detection optical system
    Profile of Zernike freeform surface of primary mirror. (a) Two-dimensional; (b) three-dimensional
    Fig. 2. Profile of Zernike freeform surface of primary mirror. (a) Two-dimensional; (b) three-dimensional
    Profile of XY freeform surface of tertiary mirror. (a) Two-dimensional; (b) three-dimensional
    Fig. 3. Profile of XY freeform surface of tertiary mirror. (a) Two-dimensional; (b) three-dimensional
    Spot diagram of system
    Fig. 4. Spot diagram of system
    Encircled energy distributions under different field views. (a) Field view of 0.5; (b) field view of 0.7; (c) edge field of view
    Fig. 5. Encircled energy distributions under different field views. (a) Field view of 0.5; (b) field view of 0.7; (c) edge field of view
    Detecting optical path. (a) CGH detecting optical path of freeform surface; (b) CGH unit in detecting optical path
    Fig. 6. Detecting optical path. (a) CGH detecting optical path of freeform surface; (b) CGH unit in detecting optical path
    Lithography linear density of CGH and wave aberration of detecting system. (a) Lithographic linear density; (b) wave aberration
    Fig. 7. Lithography linear density of CGH and wave aberration of detecting system. (a) Lithographic linear density; (b) wave aberration
    No.PolynomialAberration
    Polar coordinate systemCartesian coordinate system
    111Piston
    2ρcos θxx-tilt
    3ρsin θyy-tilt
    4ρ2cos(2θ)x2-y20° or 90° astigmatism
    52ρ2-12(x2+y2)-1Defocus
    6ρ2sin(2θ)2xy45° astigmatism
    7ρ3cos(3θ)x(x2-y2)-2xy2x-trefoil
    8(3ρ2-2)ρcos θx[3(x2+y2)-2]x-coma
    9(3ρ2-2)ρsin θy[3(x2+y2)-2]y-coma
    Table 1. Corresponding relationship between Zernike polynomials and aberration
    ParameterValue
    B8
    Nc46
    τ0.8
    Integration time /s0.02
    Eph /(10-19 J)3.4
    fQE /%55
    Table 2. Performance parameters of detector
    System parameterValue
    Focal length /mm64
    Field of view /[(°) ×(°)]30×30
    Entrance aperture /mm51
    Equivalent visual magnitude9
    Spectral band /nm400-900
    Table 3. Main technical indexes of space-based optical detection system
    SurfaceRadius /mmThickness /mm
    Primary mirror175.4386-150
    Secondary mirror333.3333150
    Tertiary mirror-330.3704-125
    Table 4. Initial structural parameters of optical system
    MirrorRadius /mmDistance /mmConstant ofquadric surfaceY decenter /mmx tilt /(°)
    Primary mirror398.39-297.29-2.73117.5522.60
    Secondary mirror1165.19287.29019.030
    Tertiary mirror-770.05-267.70-6.82-22.213.15
    Table 5. Mirror parameters of optical system after optimization
    No.TermCoefficient
    1Z13.703732952805
    2Z2-0.005921378239
    3Z31.074318956926
    4Z4-0.000844676164
    5Z50.000225724509
    6Z6-7.298797621080×10-6
    7Z75.336916645650×10-8
    8Z8-2.419364792778×10-8
    9Z92.566383909345×10-6
    10Z10-1.197484299545×10-6
    11Z114.052592425289×10-10
    12Z12-2.946732238365×10-9
    Table 6. Parameters of Zernike freeform surface of primary mirror
    ItemCoefficientItemCoefficient
    Y0.0657280763771848X4Y-1.508575293882×10-13
    X20.000526216242287311X2Y3-1.246876764365×10-12
    Y20.000529147800335145Y51.859610071502×10-12
    X2Y-2.14467235342657×10-8X68.860132888429×10-15
    Y3-3.04871515062429×10-8X4Y22.549695693063×10-14
    X4-1.89146570020516×10-9X2Y41.780628633470×10-14
    X2Y2-3.7733664377066×10-9Y61.292338859180×10-14
    Y4-1.69502835366705×10-9--
    Table 7. Parameters of XY freeform surface of tertiary mirror
    MirrorManufacture toleranceAlignment tolerance
    ΔR /mmΔKRMS of shapeerror /λDecenter /mmTilt /radDisplacementΔY /mm
    Primary mirror0.020.011/500.023×10-40.02
    Second mirror0.0050.0021/500.011.5×10-40.02
    Tertiary mirror0.020.0081/500.023×10-40.08
    Table 8. Distribution of system tolerance
    Field No.Sagittal direction /(°)Tangential direction /(°)Design value /μmDesign tolerance /μm
    10-50.0154160.023123
    20-200.0105100.018538
    30-350.0106990.018867
    45-50.0093670.016026
    55-200.0130220.022765
    65-350.0078000.014165
    710-50.0095850.017063
    810-200.0134780.021934
    910-350.0068470.012299
    1015-50.0099960.018456
    1115-200.0070320.012354
    1215-350.0064250.016219
    Table 9. Performance of system tolerance
    Dongwei Ni, Xuyang Li, Mingyang Yang, Zhiguang Ren. Large Field of View Space-Based Optical Detection System Based on Freeform Surfaces[J]. Acta Optica Sinica, 2018, 38(11): 1122003
    Download Citation