• Advanced Photonics Nexus
  • Vol. 2, Issue 2, 026002 (2023)
Jeremy Belhassen1、2, Simcha Glass1、3, Eti Teblum4, George A. Stanciu5, Denis E. Tranca5, Zeev Zalevsky2、4、*, Stefan G. Stanciu5、*, and Avi Karsenty1、3、*
Author Affiliations
  • 1Jerusalem College of Technology, Lev Academic Center, Faculty of Engineering, Department of Applied Physics/Electro-Optics Engineering, Advanced Laboratory of Electro-Optics, Jerusalem, Israel
  • 2Bar-Ilan University, Faculty of Engineering, Ramat Gan, Israel
  • 3Nanotechnology Center for Research and Education, Lev Academic Center, Jerusalem, Israel
  • 4Bar-Ilan University, The Nanotechnology Center, Ramat Gan, Israel
  • 5Politehnica University of Bucharest, Center for Microscopy-Microanalysis and Information Processing, Bucharest, Romania
  • show less
    DOI: 10.1117/1.APN.2.2.026002 Cite this Article Set citation alerts
    Jeremy Belhassen, Simcha Glass, Eti Teblum, George A. Stanciu, Denis E. Tranca, Zeev Zalevsky, Stefan G. Stanciu, Avi Karsenty. Toward augmenting tip-enhanced nanoscopy with optically resolved scanning probe tips[J]. Advanced Photonics Nexus, 2023, 2(2): 026002 Copy Citation Text show less
    References

    [1] Y. M. Sigal, R. Zhou, X. Zhuang. Visualizing and discovering cellular structures with super-resolution microscopy. Science, 361, 880-887(2018).

    [2] M. B. Stone, S. A. Shelby, S. L. Veatch. Super-resolution microscopy: shedding light on the cellular plasma membrane. Chem. Rev., 117, 7457-7477(2017).

    [3] L. Schermelleh et al. Super-resolution microscopy demystified. Nat. Cell Biol., 21, 72(2019).

    [4] Y. Jing et al. Super-resolution microscopy: shedding new light on in vivo imaging. Front. Chem., 9, 746900(2021).

    [5] S. Pujals et al. Super-resolution microscopy as a powerful tool to study complex synthetic materials. Nat. Rev. Chem., 3, 68-84(2019).

    [6] S. W. Hell et al. The 2015 super-resolution microscopy roadmap. J. Phys. D: Appl. Phys., 48, 443001(2015).

    [7] K. C. Gwosch et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Meth., 17, 217-224(2020).

    [8] M. Weber et al. MINSTED nanoscopy enters the Ångström localization range. Nat. Biotechnol.(2022).

    [9] S. Castelletto, A. Boretti. Color centers in wide-bandgap semiconductors for subdiffraction imaging: a review. Adv. Photonics, 3, 054001(2021).

    [10] J. Vogelsang et al. Make them blink: probes for super-resolution microscopy. ChemPhysChem, 11, 2475-2490(2010).

    [11] S. Sreedharan et al. Nanocarriers used as probes for super-resolution microscopy. Mater. Chem. Front., 5, 1268-1282(2021).

    [12] S. Wäldchen et al. Light-induced cell damage in live-cell super-resolution microscopy. Sci. Rep., 5, 14348(2015).

    [13] M. Cosentino et al. AFM-STED correlative nanoscopy reveals a dark side in fluorescence microscopy imaging. Sci. Adv., 5, eaav8062(2019).

    [14] X. Chen et al. Modern scattering-type scanning near-field optical microscopy for advanced material research. Adv. Mater., 31, 1804774(2019).

    [15] P. Verma. Tip-enhanced Raman spectroscopy: technique and recent advances. Chem. Rev., 117, 6447-6466(2017).

    [16] J. M. Gerton et al. Tip-enhanced fluorescence microscopy at 10 nanometer resolution. Phys. Rev. Lett., 93, 180801(2004).

    [17] A. Zayats, V. Sandoghdar. Apertureless near-field optical microscopy via local second-harmonic generation. J. Microsc., 202, 94-99(2001).

    [18] K. Yao et al. Nanoscale optical imaging of 2D semiconductor heterostructures by exciton enhanced second harmonic generation. Bull. Am. Phys. Soc., 67(2022).

    [19] B. Yang et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics, 14, 693-699(2020).

    [20] D. Nowak et al. Nanoscale chemical imaging by photoinduced force microscopy. Sci. Adv., 2, e1501571(2016).

    [21] D. A. Schmidt, I. Kopf, E. Bruendermann. A matter of scale: from far-field microscopy to near-field nanoscopy. Laser Photonics Rev., 6, 296-332(2012).

    [22] S. Mahapatra et al. Tip-enhanced Raman spectroscopy: chemical analysis with nanoscale to angstrom scale resolution. J. Chem. Phys., 153, 010902(2020).

    [23] P. Kusch et al. Combined tip-enhanced Raman spectroscopy and scattering-type scanning near-field optical microscopy. J. Phys. Chem. C, 122, 16274-16280(2018).

    [24] X. G. Xu, M. B. Raschke. Near-field infrared vibrational dynamics and tip-enhanced decoherence. Nano Lett., 13, 1588-1595(2013).

    [25] E. A. Muller, B. Pollard, M. B. Raschke. Infrared chemical nano-imaging: accessing structure, coupling, and dynamics on molecular length scales. J. Phys. Chem. Lett., 6, 1275-1284(2015).

    [26] H. Lee et al. Tip-enhanced photoluminescence nano-spectroscopy and nano-imaging. Nanophotonics, 9, 3089-3110(2020).

    [27] M. Ohtsu. History, current developments, and future directions of near-field optical science. Opto-Electron. Adv., 3, 190046(2020).

    [28] A. P. Hibbins, J. R. Sambles, C. R. Lawrence. Surface plasmon-polariton study of the optical dielectric function of titanium nitride. J. Mod. Opt., 45, 2051-2062(1998).

    [29] B. Knoll, F. Keilmann. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Opt. Commun., 182, 321-328(2000).

    [30] A. A. Govyadinov et al. Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy. J. Phys. Chem. Lett., 4, 1526-1531(2013).

    [31] D. E. Tranca et al. High-resolution quantitative determination of dielectric function by using scattering scanning near-field optical microscopy. Sci. Rep., 5, 11876(2015).

    [32] M. M. Qazilbash et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science, 318, 1750-1753(2007). https://doi.org/10.1126/science.1150124

    [33] Z. Fei et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 487, 82-85(2012).

    [34] I. Amenabar et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun., 4, 2890(2013).

    [35] M. Liu et al. Anisotropic electronic state via spontaneous phase separation in strained vanadium dioxide films. Phys. Rev. Lett., 111, 096602(2013).

    [36] C. Westermeier et al. Sub-micron phase coexistence in small-molecule organic thin films revealed by infrared nano-imaging. Nat. Commun., 5, 4101(2014).

    [37] E. Yoxall et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photonics, 9, 674(2015).

    [38] J. N. Chen et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature, 487, 77-81(2012).

    [39] Z. Fei et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 487, 82-85(2012).

    [40] T. Neuman et al. Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser Photonics Rev., 9, 637-649(2015).

    [41] R. O. Freitas et al. Nano-infrared imaging of primary neurons. Cells, 10, 2559(2021).

    [42] K. J. Kaltenecker et al. Infrared-spectroscopic, dynamic near-field microscopy of living cells and nanoparticles in water. Sci. Rep., 11, 21860(2021).

    [43] K. Kanevche et al. Infrared nanoscopy and tomography of intracellular structures. Commun. Biol., 4, 1-8(2021).

    [44] E. Pfitzner, J. Heberle. Infrared scattering-type scanning near-field optical microscopy of biomembranes in water. J. Phys. Chem. Lett., 11, 8183-8188(2020).

    [45] D. E. Tranca et al. Nanoscale mapping of refractive index by using scattering-type scanning near-field optical microscopy. Nanomed.: Nanotechnol. Biol. Med., 14, 47-50(2018).

    [46] W. Zhang, Y. Chen. Visibility of subsurface nanostructures in scattering-type scanning near-field optical microscopy imaging. Opt. Express, 28, 6696-6707(2020).

    [47] K. Moon et al. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy. Nano Lett., 15, 549-552(2015).

    [48] H. Wang et al. Mapping three-dimensional near-field responses with reconstruction scattering-type scanning near-field optical microscopy. AIP Adv., 7, 055118(2017).

    [49] P. Bazylewski, S. Ezugwu, G. Fanchini. A review of three-dimensional scanning near-field optical microscopy (3D-SNOM) and its applications in nanoscale light management. Appl. Sci., 7, 973(2017).

    [50] M. S. Anderson. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett., 76, 3130-3132(2000).

    [51] N. Hayazawa et al. Metallized tip amplification of near-field Raman scattering. Opt. Commun., 183, 333-336(2000).

    [52] R. M. Stöckle et al. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett., 318, 131-136(2000).

    [53] G. G. Hoffmann et al. Tip-enhanced Raman mapping of single-walled carbon nanotube networks in conductive composite materials. J. Raman Spectrosc., 48, 191-196(2017).

    [54] Y. Okuno et al. Tip-enhanced Raman investigation of extremely localized semiconductor-to-metal transition of a carbon nanotube. Phys. Rev. Lett., 111, 216101(2013).

    [55] T. A. Yano et al. Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes. Nat. Commun., 4, 2592(2013).

    [56] J. Rogalski et al. STM tip-enhanced Raman spectroscopy and the investigation of doped grapheme. Vibr. Spectrosc., 91, 128-135(2017).

    [57] T. A. Yano et al. Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometers. Nat. Photonics, 3, 473-477(2009).

    [58] C. Chen, N. Hayazawa, S. Kawata. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun., 5, 3312(2014).

    [59] A. Ambrosio et al. Observation of nanoscale refractive index contrast via photoinduced force microscopy. ACS Photonics, 4, 846-851(2017).

    [60] T. Schmid et al. Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates. Anal. Bioanal. Chem., 391, 1907-1916(2008).

    [61] D. Cialla et al. Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus. J. Raman Spectrosc., 40, 240-243(2009).

    [62] A. Hermelink et al. Towards a correlative approach for characterising single virus particles by transmission electron microscopy and nanoscale Raman spectroscopy. Analyst, 142, 1342-1349(2017).

    [63] U. Neugebauer et al. On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. ChemPhysChem, 7, 1428-1430(2006).

    [64] B. R. Wood et al. Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte. Nano Lett., 11, 1868-1873(2011).

    [65] L. F. Xiao et al. Probing membrane receptor-ligand specificity with surface- and tip-enhanced Raman scattering. Anal. Chem., 89, 9091-9099(2017).

    [66] R. Böhme et al. Biochemical imaging below the diffraction limit-probing cellular membrane related structures by tip-enhanced Raman spectroscopy (TERS). J. Biophotonics, 3, 455-461(2010).

    [67] A. V. Zayats, V. Sandoghdar. Apertureless scanning near-field second-harmonic microscopy. Opt. Commun., 178, 245-249(2000).

    [68] C. C. Neacsu et al. Second-harmonic near-field imaging of ferroelectric domain structure of YMnO3. Phys. Rev. B, 79, 100107(2009). https://doi.org/10.1103/PhysRevB.79.100107

    [69] J. Jahng et al. Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy. Acc. Chem. Res., 48, 2671-2679(2015).

    [70] T. U. Tumkur et al. Photoinduced force mapping of plasmonic nanostructures. Nano Lett., 16, 7942-7949(2016).

    [71] M. Soliman et al. Photoinduced force microscopy: a technique for hyperspectral nanochemical mapping. Jpn. J. Appl. Phys., 56, 08LA04(2017).

    [72] J. Jahng et al. Visualizing surface plasmon polaritons by their gradient force. Opt. Lett., 40, 5058-5061(2015).

    [73] L. Zhang et al. Transformable peptide nanoparticles arrest HER2 signalling and cause cancer cell death in vivo. Nat. Nanotechnol., 15, 145-153(2020).

    [74] Z. Ma et al. Fluorescence near-field microscopy of DNA at sub-10 nm resolution. Phys. Rev. Lett., 97, 260801(2006).

    [75] O. Schulz et al. Tip induced fluorescence quenching for nanometer optical and topographical resolution. Opt. Nanosc., 2, 1-8(2013).

    [76] A. Harder et al. Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin. Beilstein J. Nanotechnol., 4, 510-516(2013).

    [77] C. Xie et al. Tip-enhanced fluorescence microscopy of high-density samples. Appl. Phys. Lett., 89, 143117(2006).

    [78] F. M. Huang, F. Festy, D. Richards. Tip-enhanced fluorescence imaging of quantum dots. Appl. Phys. Lett., 87, 183101(2005).

    [79] E. J. Sánchez, L. Novotny, X. S. Xie. Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett., 82, 4014(1999).

    [80] L. Meng et al. A nanoplasmonic strategy for precision in-situ measurements of tip-enhanced Raman and fluorescence spectroscopy. Sci. Rep., 6, 19558(2016).

    [81] S. G. Stanciu et al. Scattering-type scanning near-field optical microscopy of polymer-coated gold nanoparticles. ACS Omega, 7, 11353-11362(2022).

    [82] C. Maissen et al. Probes for ultrasensitive THz nanoscopy. ACS Photonics, 6, 1279-1288(2019).

    [83] . Introduction to COMSOL Multiphysics®, 32(1998).

    [84] T. Siday et al. Resonance-enhanced terahertz nanoscopy probes. ACS Photonics, 7, 596-601(2020).

    [85] I. U. Vakarelski, K. Higashitani. Single-nanoparticle-terminated tips for scanning probe microscopy. Langmuir, 22, 2931-2934(2006).

    [86] C. Leiterer et al. High precision attachment of silver nanoparticles on AFM tips by dielectrophoresis. Anal. Bioanal. Chem., 408, 3625-3631(2016).

    [87] O. K. Ong, I. Sokolov. Attachment of nanoparticles to the AFM tips for direct measurements of interaction between a single nanoparticle and surfaces. J. Colloid Interface Sci., 310, 385-390(2007).

    [88] R. M. Langford et al. Focused ion beam micro- and nanoengineering. MRS Bull., 32, 417-423(2007).

    [89] J. Melngailis. Focused ion beam technology and applications. J. Vac. Sci. Technol. B: Microelectron. Process. Phenom., 5, 469-495(1987).

    [90] X. Chen et al. Rapid simulations of hyperspectral near-field images of three-dimensional heterogeneous surfaces—part II. Opt. Express, 30, 11228-11242(2022).

    [91] S. Mastel et al. Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution. ACS Photonics, 5, 3372-3378(2018).

    [92] P. Hildebrandt et al. Alternative fluorescent labeling strategies for characterizing gram-positive pathogenic bacteria: flow cytometry supported counting, sorting, and proteome analysis of Staphylococcus aureus retrieved from infected host cells. Cytometry A, 89, 932-940(2016).

    [93] W. Telford et al. DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry. Cytometry A, 68, 36-44(2005).

    [94] S. A. Maier. Plasmonics: Fundamentals and Applications(2007).

    [95] G. L. Liu et al. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat. Methods, 4, 1015-1017(2007).

    [96] B. Deutsch, R. Hillenbrand, L. Novotny. Near-field amplitude and phase recovery using phase-shifting interferometry. Opt. Express, 16, 494-501(2008).

    [97] W. Lee et al. A rewritable optical storage medium of silk proteins using near-field nano-optics. Nat. Nanotechnol., 15, 941-947(2020).

    [98] F. Cao, F. Donnarumma, K. K. Murray. Wavelength-dependent atomic force microscope tip-enhanced laser ablation. Appl. Surf. Sci., 447, 437-441(2018).

    [99] T. Lewi et al. Widely tunable infrared antennas using free carrier refraction. Nano Lett., 15, 8188-8193(2015).

    [100] J. Mock et al. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys., 116, 6755-6759(2002).

    [101] J. Dong et al. Recent progress on plasmon-enhanced fluorescence. Nanophotonics, 4, 472-490(2015).

    [102] P. Pompa et al. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat. Nanotechnol., 2, 126-130(2006).

    [103] S. G. Stanciu et al. A novel approach for near-field optical microscopy based on tip-enhanced fluorescence via plasmon resonance energy transfer (TEFPLASNOM), 1-6(2020).

    [104] A. Shahmoon, A. Meiri, Z. Zalevsky. Sub-micron particle based structures as reconfigurable photonic devices controllable by external photonic and magnetic fields. Sensors, 11, 2740-2750(2011).

    [105] R. Büchner et al. Tip coupling and array effects of gold nanoantennas in near-field microscopy. ACS Photonics, 8, 3486-3494(2021).

    [106] S. G. Stanciu et al. Characterization of nanomaterials by locally determining their complex permittivity with scattering-type scanning near-field optical microscopy. ACS Appl. Nano Mater., 3, 1250-1262(2020).

    [107] F. Keilmann, R. Hillenbrand. Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci., 362, 787-805(2004).

    [108] X. Guo, K. Bertling, A. D. Rakić. Optical constants from scattering-type scanning near-field optical microscope. Appl. Phys. Lett., 118, 041103(2021).

    [109] K. G. Wirth et al. Tunable s-SNOM for nanoscale infrared optical measurement of electronic properties of bilayer grapheme. ACS Photonics, 8, 418-423(2021).

    [110] Q. Sun et al. Revealing the plasmon coupling in gold nanochains directly from the near field. Opto-Electron. Adv., 2, 18003001(2019).

    [111] S. Ghorai, C. A. Seneviratne, K. K. Murray. Tip-enhanced laser ablation sample transfer for biomolecule mass spectrometry. J. Am. Soc. Mass Spectrom., 26, 63-70(2014).

    [112] K. Zhang. A method for reducing laser heating on atomic force microscope tips. Eur. Phys. J.-Appl. Phys., 53, 10603(2011).

    [113] M. Fowler. AltaSim simulates Mie scattering of electromagnetic waves.

    [114] J. Crompton, S. Yushanov, K. Koppenhoefer. Mie scattering of electromagnetic waves(2013).

    Jeremy Belhassen, Simcha Glass, Eti Teblum, George A. Stanciu, Denis E. Tranca, Zeev Zalevsky, Stefan G. Stanciu, Avi Karsenty. Toward augmenting tip-enhanced nanoscopy with optically resolved scanning probe tips[J]. Advanced Photonics Nexus, 2023, 2(2): 026002
    Download Citation