• Laser & Optoelectronics Progress
  • Vol. 54, Issue 5, 50007 (2017)
Sun Xiao*, Han Long, and Wang Keqiang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.050007 Cite this Article Set citation alerts
    Sun Xiao, Han Long, Wang Keqiang. Progress in Directly Pumping of Mid-Infrared Solid-State Lasers[J]. Laser & Optoelectronics Progress, 2017, 54(5): 50007 Copy Citation Text show less
    References

    [1] Dong Yijing, Ma Xiuhua, Li Shiguang, et al. 3-5 μm optical parametric oscillator technology[J]. Laser & Optoelectronics Progress, 2016, 53(9): 090004.

    [2] Peng Yapei, Jiang Benxue, Fan Jintai, et al. Review of in mid-infrared laser materials directly pumped by laser-diode[J]. Laser & Optoelectronics Progress, 2015, 52(2): 020001.

    [3] Fan Jinxiang. Status quo and trend of infrared system and technologies for America′s ballistic missile defense system[J]. Infrared and Laser Engineering, 2006, 35(5): 536-550.

    [4] Liu Lei, Li Xiao, Liu Tong, et al. Progress of mid-infrared continuous-wave optical parametric oscillation technique[J]. Laser & Optoelectronics Progress, 2012, 49(6): 060002.

    [5] Creeden D, Ketteridge P A, Budni P A, et al. Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 μm Tmdoped fiber laser[J]. Optics Letter, 2008, 33(4): 315-317.

    [6] Hemming A, Richards J, Bennetts S, et al. A high power hybrid mid-IR laser source[J]. Optics Communication, 2010, 283(20): 4041-4045.

    [7] Ji Encai, Wang Lu, Liu Qiang, et al. Review of mid-infrared Ho∶BYF laser with direct pumping method[J]. China Science Paper, 2015, 10(5): 503-507.

    [8] Li Y F, Yao B Q, Wang Z G. Tunable CW Tm, Ho∶YLF laser at 2 μm[J]. Chinese Optics Letters, 2006, 4(8): 470-471.

    [9] Wei Lei, Xiao Lei, Han Long, et al. ZGP optical parametric oscillator pumped by Tm∶YAP laser[J]. Chinese J Lasers, 2012, 39(7): 0702006.

    [10] Peng Y F, Wei X, Wang W M, et al. High-power 3.8 μm tunable optical parametric oscillator based on PPMgO∶CLN[J]. Optics Communications, 2010, 283(20): 4032-4035.

    [11] Han Long, Yuan Ligang, Chen Guo, et al. 26 W mid-infrared solid-state laser[J]. Chinese J Lasers, 2015, 42(3): 0302004.

    [12] Wang Ying, Luo Zhengqian, Xiong Fengfu, et al. Numerical optimization of 3-5 μm mid-infrared ZBLAN fiber Raman lasers[J]. Laser & Optoelectronics Progress, 2014, 51(6): 061405.

    [13] Hao Zhijian, Lei Dajun, Zhao Chujun, et al. Generation of mid-infrared supercontinuum in two cascaded fibers[J]. Chinese J Lasers, 2011, 38(1): 0105009.

    [14] Ke Changjun, Kong Xinyi, Wang Ran, et al. Research progress on mid-IR Fe∶ZnSe laser technology[J]. Infrared and Laser Engineering, 2016, 45(3): 136-142.

    [15] Pan Qikun. Progress of mid-infrared solid-state laser[J]. Chinese Optics, 2015, 8(4): 557-566.

    [16] Kernal J, Fedorov V V, Gallian A, et al. 3.9-4.8 μm gain switched lasing of Fe∶ZnSe at room temperature[J]. Optics Express, 2005, 13(26): 10608-10615.

    [17] Voronov A A, Kozlovskii V I, Korostelin Y V, et al. A continuous-wave Fe2+∶ZnSe laser[J]. Quantum Electron, 2008, 38(12): 1113-1116.

    [18] Adams J J, Bibeau C, Page R H, et al. 4.0-4.5 μm lasing of Fe∶ZnSe below 180 K, a new mid-infrared laser material[J]. Optics Letters, 1999, 24(23): 1720-1722.

    [19] Akimov V A, Voronov A A, Kozlovskii V I, et al. Efficient IR Fe∶ZnSe laser continuously tunable in the spectral range from 3.77 to 4.40 microns[J]. Quantum Electron, 2004, 34(10): 912-914.

    [20] Voronov A A, Kozlovskii V I, Korostelin Y V, et al. Laser parameters of a Fe∶ZnSe laser crystal in the 85-255 K temperature range[J]. Quantum Electron, 2005, 35(9): 809-812.

    [21] Fedorov V V, Martyshkin D V, Mirov M, et al. High energy 4.1-4.6 μm Fe∶ZnSe laser[J]. Lasers & Electro-Optics, 2012: 1-2.

    [22] Xia Shixing, Mo Xiaogang, Li Xingwang, et al. Preparation and optical absorption of Fe2+∶ZnSe crystal[J]. Journal of Synthetic Crystals, 2013, 42(10): I0002.

    [24] Akimov V A, Voronov A A, Kozlovskii V I, et al. Efficient lasing in a Fe2+∶ZnSe crystal at room temperature[J]. Quantum Electron, 2006, 36(4): 299-301.

    [25] Doroshenko M E, Jelnkov H, Koranda P, et al. Tunable mid-infrared laser properties of Cr2+∶ZnMgSe and Fe2+∶ZnSe crystal[J]. Laser Physics Letters, 2010, 7(1): 38-45.

    [26] Kozlovsky V I, Akimov V A, Frolov M P, et al. Room temperature tunable mid-infrared lasers on transition-metaldoped II-VI compound crystals grown from vapor phase[J]. Physica Status Solidi B, 2010, 247(6): 1553-1556.

    [27] Myoung N, Martyshkin D V, Fedorov V V, et al. Energy scaling of 4.3 μm room temperature Fe∶ZnSe laser[J]. Optics Letters, 2011, 36(1): 94-96.

    [28] Doroshenko M E, Jelinkova H, Basiev T T, et al. Fe∶ZnSe laser comparison of active materials grown by two different methods[C]. SPIE, 2011, 7912: 79122D.

    [29] Fedorov V V, Martyshkin D, Mirov M, et al. Fe-doped II-VI mid-infrared laser materials for the 3 to 8 μm region[C]. CLEO: Science and Innovations, 2013, 23(4): 7946-7956.

    [30] Evans J W, Berry P A, Schepler L L. 840 mW continuous wave Fe∶ZnSe laser operating at 4140 nm[J]. Optics Letters, 2012, 37(23): 5021-5023.

    [31] Frolov M P, Korostelin Y V, Kozlovsky V I, et al. Study of a 2 J pulsed Fe∶ZnSe 4 μm laser[J]. Laser Physics Letters, 2013, 10(12): 125001.

    [32] Velikanov S D, Danilov V P, Zakharov N G, et al. Fe2+∶ZnSe laser pumped by a nonchain electric-discharge HF laser at room temperature[J]. Quantum Electron, 2014, 44 (2): 141-144.

    [33] Firsov K N, Gavrishchuk E M, Kazantsev S Yu, et al. Increasing the radiation energy of ZnSe: Fe2+ laser at room temperature[J]. Laser Physics Letter, 2014, 11(8): 085001.

    [34] Evans J W, Berry P A, Schepler K L. A passively Q-switched, CW-pumped Fe∶ZnSe laser[J]. IEEE Journal of Quanturm Electronics, 2014, 50(3): 204-209.

    [35] Martyshkin D V, Fedorov V V, Mirov M, et al. High average power (35 W) pulsed Fe∶ZnSe laser tunable over 3.8-4.2 μm[C]. Lasers and Electro-Optics, IEEE, 2015: 1-2.

    [36] Velikanov S D, Zakharov N G, Zotov. E. A, et al. Room-temperature 1.2 J Fe∶ZnSe laser[J]. Quantum Electronics, 2016, 46(1): 11-12.

    [39] Jie C, Liu Q, Nie M M, et al. Spectroscopic properties of heavily Ho-doped barium yttrium fluoride crystals[J]. Chinese Physics B, 2015 (9): 299-306.

    [40] Schneider J, Carbonnier C, Unrau U. Characterization of a Ho3+-doped fluoride fibre laser with a 3.9 μm emission wavelength[J]. Applied Optics, 1997, 36(33): 8595-8600.

    [41] Luo Hui, Qi Lu, Zhu Shifu, et al. Study of growth and spectrum of Ho∶BaY2F8 crystals[J]. Journal of Synthetic Crystals, 2012, 41(6): 1502-1509.

    [42] Luo H, Guan Z, He Z, et al. Investigation on growth and defects of Ho3+∶BaY2F8, crystals grown by Czochralski method[J]. Journal of Alloys and Compounds, 2015, 648: 803-808.

    [44] Li C, Zeng F, Lin H, et al. Optical spectroscopy of low-phonon Ho3+ doped BaY2F8 single crystal[J]. Russian Journal of Physical Chemistry A, 2014, 88(12): 2260-2264.

    [45] Tabirian A M, Jenssen B P, Cassanho A. Efficient, room temperature mid-infrared laser at 3.9 μm in Ho: BaY2F8[J]. Advanced Solid-State Lasers, 2001, 5: 5F4.

    [46] Stutz R, Miller H, Dinndorf K, et al. High pulse energy 3.9 μm lasers in Ho∶ BYF[C]. SPIE, 2004, 5332: 111-119.

    [47] Basiev T T, Doroshenko M E, Osiko V V, et al. Mid IR laser oscillations in new low phonon PbGa2S4: Dy3+ crystal[C]. Advanced Solid-State Photonics, 2005.

    [48] Doroshenko M E, Basiev T T, Osiko V V, et al. Oscillation properties of dysprosium-doped lead thiogallate crystal[J]. Optics Letters, 2009, 34(5): 590-592 .

    [49] Sulc J, Jelínková H, Doroshenko M E, et al. Dysprosium-doped PbGa2S4 laser excited by diode-pumped Nd∶YAG laser[J]. Optics Letters, 2010, 35(18): 3051-3.

    [50] Basiev T T, Doroshenko M E, Osiko V V, et al. Laser properties of Na+icons Co-doped PbGa2S4∶Dy3+crystal[C]. Advanced Solid-State Photonics, 2010.

    [51] Jelinkova H, Doroshenko M E, Jelinek M, et al. Resonant pumping of dysprosium doped lead thiogallate by 1.7 μm Er∶YLF laser radiation[J]. Laser Physics Letters, 2011, 8: 349-353.

    [52] Jelinkova H. Dysprosium lead thiogallate crystal resonantly pumped by Er∶ YLF laser radiation[C]. Advanced Solid-State Photonics, 2011.

    [53] ulc J, Jelinkova H, Doroshenko M E, et al. High duty cycle and long pulse operation of Dy∶PbGa2S4 laser excited by diode pumped Nd∶YAG[C]. Advanced Solid-State Photonics. 2011.

    [54] Jelínková H, Doroshenko M E, Jelínek M, et al. Dysprosium-doped PbGa2S4 laser generating at 4.3 μm directly pumped by 1.7 μm laser diode[J]. Optics Letters, 2013, 38(16): 3040-3043.

    [55] Jelinkova H, Doroshenko M E, Osiko V V, et al. Dysprosium thiogallate laser: source of mid-infrared radiation at 2.4, 4.3, and 5.4 μm[J]. Applied Physics A, 2016, 122(8): 1-8.

    CLP Journals

    [1] Zhang Xin, Shu Shili, Tong Cunzhu. Research progress of Er:ZBLAN fiber lasers at the wavelength of 3 μm[J]. Opto-Electronic Engineering, 2019, 46(8): 190070

    Sun Xiao, Han Long, Wang Keqiang. Progress in Directly Pumping of Mid-Infrared Solid-State Lasers[J]. Laser & Optoelectronics Progress, 2017, 54(5): 50007
    Download Citation