• Photonics Research
  • Vol. 10, Issue 8, 1971 (2022)
Li Liu1、2、†, Ruxue Wang1、2、†, Xuyi Zhao2、3, Wenfu Yu2、3, Yi Jin4、5、*, Qian Gong2、3、6、*, and Aimin Wu1、2、7、*
Author Affiliations
  • 1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 4Centre for Optical and Electromagnetic Research and International Research Center for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
  • 5e-mail: jinyi_2008@zju.edu.cn
  • 6e-mail: qgong@mail.sim.ac.cn
  • 7e-mail: wuaimin@mail.sim.ac.cn
  • show less
    DOI: 10.1364/PRJ.462474 Cite this Article Set citation alerts
    Li Liu, Ruxue Wang, Xuyi Zhao, Wenfu Yu, Yi Jin, Qian Gong, Aimin Wu. Heterogeneously integrated quantum-dot emitters efficiently driven by a quasi-BIC-supporting dielectric nanoresonator[J]. Photonics Research, 2022, 10(8): 1971 Copy Citation Text show less
    References

    [1] L. Zimmermann, G. B. Preve, K. Voigt, G. Winzer, J. Kreissl, L. Moerl, C. Stamatiadis, L. Stampoulidis, H. Avramopoulos. High-precision flip-chip technology for all optical wavelength conversion using SOI photonic circuit. 8th IEEE International Conference on Group IV Photonics, 237-239(2011).

    [2] G. H. Duan, C. Jany, A. L. Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, N. Girard, F. Lelarge. Hybrid III-V on silicon lasers for photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron., 20, 158-170(2014).

    [3] J. C. Norman, D. Jung, Y. Wan, E. John. Bowers perspective: the future of quantum dot photonic integrated circuits. APL Photon., 3, 030901(2018).

    [4] T. Zhou, M. Tang, G. Xiang, X. Fang, X. Liu, B. Xiang, S. Hark, M. Martin, M.-L. Touraton, T. Baron, Y. Lu, S. Chen, H. Liu, Z. Zhang. Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates. Optica, 6, 430-435(2019).

    [5] K. Nishi, K. Takemasa, M. Sugawara, Y. Arakawa. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J. Sel. Top. Quantum Electron., 23, 1901007(2017).

    [6] M. Ren-Min, R. F. Oulton. Applications of nanolasers. Nat. Nanotechnol., 14, 12-22(2019).

    [7] I. Staude, T. Pertsch, Y. S. Kivshar. All-dielectric resonant meta-optics lightens up. ACS Photon., 6, 802-814(2019).

    [8] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, B. Luk’yanchuk. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).

    [9] V. Rutckaia, F. Heyroth, A. Novikov, M. Shaleev, M. Petrov, J. Schilling. Quantum dot emission driven by Mie resonances in silicon nanostructures. Nano Lett., 17, 6886-6892(2017).

    [10] E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev, V. Mikhailovskii, E. V. Ushakova, D. G. Baranov, T. Shegai, A. A. Zakhidov, Y. Kivshar, S. V. Makarov. Room-temperature lasing from Mie-resonant non-plasmonic nanoparticles. ACS Nano, 14, 8149-8156(2020).

    [11] T. X. Hoang, S. T. Ha, Z. Pan, W. K. Phua, R. Paniagua-Domínguez, C. E. Png, H.-S. Chu, A. I. Kuznetsov. Collective Mie resonances for directional on-chip nanolasers. Nano Lett., 20, 5655-5661(2020).

    [12] V. Rutckaia, F. Heyroth, G. Schmidt, A. Novikov, M. Shaleev, R. S. Savelev, J. Schilling, M. Petrov. Coupling of germanium quantum dots with collective sub-radiant modes of silicon nanopillar arrays. ACS Photon., 8, 209-217(2021).

    [13] H. Sugimoto, M. Fujii. Colloidal Mie resonant silicon nanoparticles. Nanotechnology, 32, 452001(2021).

    [14] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, M. Soljačić. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

    [15] Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, A. V. Lavrinenko. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness. ACS Photon., 4, 723-727(2017).

    [16] A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, K. Boubacar. Lasing action from photonic bound states in continuum. Nature, 541, 196-199(2017).

    [17] K. Koshelev, A. Bogdanov, Y. Kivshar. Meta-optics and bound states in the continuum. Sci. Bull., 64, 836-842(2019).

    [18] J.-H. Yang, Z.-T. Huang, D. N. Maksimov, P. S. Pankin, I. V. Timofeev, K.-B. Hong, H. Li, J.-W. Chen, C.-Y. Hsu, Y.-Y. Liu, T.-C. Lu, T.-R. Lin, C.-S. Yang, K.-P. Chen. Low-threshold bound state in the continuum lasers in hybrid lattice resonance metasurfaces. Laser Photon. Rev., 15, 2100118(2021).

    [19] S. Cao, Y. Jin, H. Dong, T. Guo, J. He, S. He. Enhancing single photon emission through quasi-bound states in the continuum of monolithic hexagonal boron nitride metasurface. J. Phys. Mater., 4, 035001(2021).

    [20] M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, Y. S. Kivshar. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett., 119, 243901(2017).

    [21] A. A. Bogdanov, K. L. Koshelev, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, Z. F. Sadrieva, K. B. Samusev, Y. S. Kivshar, F. Mikhail. Bound states in the continuum and Fano resonances in the strong mode coupling regime. Adv. Photon., 1, 016001(2019).

    [22] S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Dominguez, A. I. Kuznetsov. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol., 13, 1042-1047(2018).

    [23] C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, Q. Song. Ultrafast control of vortex microlasers. Science, 367, 1018-1021(2020).

    [24] V. Mylnikov, S. T. Ha, Z. Pan, V. Valuckas, R. Paniagua-Domínguez, H. V. Demir, A. I. Kuznetsov. Lasing action in single subwavelength particles supporting supercavity modes. ACS Nano, 14, 7338-7346(2020).

    [25] M. Wu, L. Ding, R. P. Sabatini, L. K. Sagar, G. Bappi, R. Paniagua-Domínguez, E. H. Sargent, A. I. Kuznetsov. Bound state in the continuum in nanoantenna-coupled slab waveguide enables low-threshold quantum-dot lasing. Nano Lett., 21, 9754-9760(2021).

    [26] W. Bi, X. Zhang, M. Yan, L. Zhao, T. Ning, Y. Huo. Low-threshold and controllable nanolaser based on quasi-BIC supported by an all-dielectric eccentric nanoring structure. Opt. Express, 29, 12634-12643(2021).

    [27] R. Heilmann, G. Salerno, J. Cuerda, T. K. Hakala, P. Törmä. Quasi-BIC mode lasing in a quadrumer plasmonic lattice. ACS Photon., 9, 224-232(2022).

    [28] H. K. Gandhi, D. Rocco, L. Carletti, C. De Angelis. Gain-loss engineering of bound states in the continuum for enhanced nonlinear response in dielectric nanocavities. Opt. Express, 28, 3009-3016(2020).

    [29] S. D. Krasikov, A. A. Bogdanov, I. V. Iorsh. Nonlinear bound states in the continuum of a one-dimensional photonic crystal slab. Phys. Rev. B, 97, 224309(2018).

    [30] K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, Y. Kivshar. Subwavelength dielectric resonators for nonlinear nanophotonics. Science, 367, 288-292(2020).

    [31] H. Kroemer. Polar-on-nonpolar epitaxy. J. Cryst. Growth, 81, 193-204(1987).

    [32] M. Liao, S. Chen, J.-S. Park, A. Seeds, H. Liu. III-V quantum-dot lasers monolithically grown on silicon. Semicond. Sci. Technol., 33, 123002(2018).

    [33] Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, K. M. Lau. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. Opt. Lett., 41, 1664-1667(2016).

    [34] Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, J. E. Bowers. 1.3  μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 4, 940-944(2017).

    [35] J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe, Y. Arakawa. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt. Express, 26, 11568-11576(2018).

    [36] B. Zhang, W.-Q. Wei, J.-H. Wang, H.-L. Wang, Z. Zhao, L. Liu, H. Cong, Q. Feng, H. Liu, T. Wang, J.-J. Zhang. O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy. AIP Adv., 9, 015331(2019).

    [37] J. E. Bowers, J. T. Bovington, A. Y. Liu, A. C. Gossard. A path to 300 mm hybrid silicon photonic integrated circuits. Optical Fiber Communication Conference, Th1C.1(2014).

    [38] E. Yablonovitch, T. Gmitter, J. P. Harbison, R. Bhat. Extreme selectivity in the lift-off of epitaxial GaAs films. Appl. Phys. Lett., 51, 222-2224(1987).

    [39] J. van de Groep, A. Polman. Designing dielectric resonators on substrates: combining magnetic and electric resonances. Opt. Express, 21, 26285-26302(2013).

    [40] R. Colom, F. Binkowski, F. Betz, Y. Kivshar, S. Burger. Enhanced Purcell factor for nanoantennas supporting interfering resonances. Phys. Rev. Res., 4, 023189(2022).

    Li Liu, Ruxue Wang, Xuyi Zhao, Wenfu Yu, Yi Jin, Qian Gong, Aimin Wu. Heterogeneously integrated quantum-dot emitters efficiently driven by a quasi-BIC-supporting dielectric nanoresonator[J]. Photonics Research, 2022, 10(8): 1971
    Download Citation