• Journal of Infrared and Millimeter Waves
  • Vol. 35, Issue 6, 662 (2016)
LI Qing-Fa1、2、3、4、*, LI Xue1、2, TANG Heng-Jing1、2, DENG Shuang-Yan1、2, CAO Gao-Qi1、2、3, SHAO Xiu-Mei1、2, and GONG Hai-Mei1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2016.06.005 Cite this Article
    LI Qing-Fa, LI Xue, TANG Heng-Jing, DENG Shuang-Yan, CAO Gao-Qi, SHAO Xiu-Mei, GONG Hai-Mei. Dark current simulation and verification of In0.83Ga0.17As detector with superlattice electron barrier[J]. Journal of Infrared and Millimeter Waves, 2016, 35(6): 662 Copy Citation Text show less
    References

    [1] Hoogeveen RW M, van der R J,Goede A P. Extended wavelength InGaAs infrared (1.02.4 μm) detector arrays on SCIAMACHY for spacebased spectrometry of the Earth atmosphere[J]. Infrared Physics & Technology, 2001,42: 1-16.

    [2] MacDougal M, Geske J, Wang C, et al. Low dark current InGaAs detector arrays for night vision and astronomy[J]. Proceedings of SPIE, 2009. 7298: 72983F.

    [3] Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature[J]. Applied Physics Letters, 2006, 89(15): 1109.

    [4] Craig A P, Marshall A R J, Tian Z B, et al. Midinfrared InAs079Sb0.21based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13Pin diodes, both grown on GaAs using interfacial misfit arrays[J]. Applied Physics Letters, 2013, 103(25): 253502.

    [5] Gu Y, Zhou L, Zhang YG, et al. Dark current suppression in metamorphic In0.83Ga0.17As photodetectors with In0.66Ga0.34As/InAs superlattice electron barrier[J]. Applied Physics Express, 2015, 8(2): 022202.

    [6] Gong H M, Shao X M, Li X, et al. Advanced technology and application of spaceborne infrared detectors[J]. Infrared and Laser Engineering, 2012, 41:3129-3140.

    [7] Gong H M, Li X, Li T, et al. Extended wavelength InGaAs infrared detector arrays based on three types of material structures grown by MBE[C]. Proceedings of SPIE, 2014, 9070:90700C.

    [8] Silvaco Inc. ATLAS User’s Manual[M]. 2012.

    [9] Ji X L, Liu B Q, Xu Y, et al. Deeplevel traps induced dark currents in extended wavelength InxGa1xAs/InP photodetector[J]. Journal of Applied Physics, 2013, 114: 224502.

    [10] Wang X D, Hu W D, Chen X S, et al. Dark current simulation of InP/In0.53Ga0.47As/InP pin photodiode[J]. Optical and Quantum Electronics, 2008, 40(1415): 1261-1266.

    [13] Dwivedi A D D, Mittal A, Agrawal A, et al. Analytical modeling and ATLAS simulation of N+InP/nIn0.53Ga0.47As /p+In0.53Ga0.47As pin photodetector for optical fiber communication[J]. Infrared Physics & Technology, 2010, 53(4):236-245.

    [14] Ahrenkiel R, Keyes B, Dunlavy D. Intensity‐dependent minority‐carrier lifetime in III‐V semiconductors due to saturation of recombination centers[J]. Journal of Applied Physics, 1991, 70(1) :225-231.

    [15] Ringel S A, Rohatgi A. The effects of trapinduced lifetime varitions on the design and performance of highefficiency GaAs solarcell[J]. Electron Devices, IEEE Transactions on, 1991, 38(11): 2402-2409.

    [16] Gu Y, Zhang YG, Liu S. Strain compensated AlInGaAs/InGaAs/InAs triangular quantum wells for lasing wavelength beyond 2 μm[J]. Chinese Physics Letters, 2007, 24(11): 3237.

    [17] Arslan Y, Oguz F, Besikci C. Extended short wavelength infrared In0.83Ga0.17As focal plane array[J]. IEEE Journal of Quantum Electronics, 2014, 50(12):957-964.

    [18] Kumar R. Current transport in isotype heterojunctions[J]. International Journal of Electronics, 1968, 25(3): 239-247.

    [19] Sun X, Li D, Li Z, et al. High spectral response of selfdriven GaNbased detectors by controlling the contact barrier height[J]. Scientific reports, 2015, 5: 16819.

    LI Qing-Fa, LI Xue, TANG Heng-Jing, DENG Shuang-Yan, CAO Gao-Qi, SHAO Xiu-Mei, GONG Hai-Mei. Dark current simulation and verification of In0.83Ga0.17As detector with superlattice electron barrier[J]. Journal of Infrared and Millimeter Waves, 2016, 35(6): 662
    Download Citation