• Acta Optica Sinica (Online)
  • Vol. 1, Issue 4, 0414001 (2024)
Cong Liu1,2, Yu Wang1,2, Yuxin Zhang1,3, Sheng Chen4..., Wenbin Hu1,**, Jixiang Dai1 and Minghong Yang1,*|Show fewer author(s)
Author Affiliations
  • 1National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, Hubei , China
  • 2School of Information Engineering, Wuhan University of Technology, Wuhan 430070, Hubei , China
  • 3School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei , China
  • 4China Special Equipment Inspection and Research Institute, Beijing 100029, China
  • show less
    DOI: 10.3788/AOSOL240445 Cite this Article Set citation alerts
    Cong Liu, Yu Wang, Yuxin Zhang, Sheng Chen, Wenbin Hu, Jixiang Dai, Minghong Yang. Progress in Optoelectronic Detection Technology for Safe Operation and Maintenance of Hydrogen Energy Storage and Transportation Equipment (Invited)[J]. Acta Optica Sinica (Online), 2024, 1(4): 0414001 Copy Citation Text show less
    References

    [1] Ding L L. Analysis and prevention of safety accidents in vehicle hydrogen energy industry chain[J]. Safety Health & Environment, 21, 20-23(2021).

    [2] Hu W J, Xiong B B, Wei J T et al. Research on on-line monitoring technology of oil and gas pipeline leakage[J]. Pipeline Technique and Equipment, 33-37(2022).

    [3] Baroudi U, Al-Roubaiey A A, Devendiran A. Pipeline leak detection systems and data fusion: a survey[J]. IEEE Access, 7, 97426-97439(2019).

    [4] Boon-Brett L, Bousek J, Moretto P. Reliability of commercially available hydrogen sensors for detection of hydrogen at critical concentrations: part Ⅱ:selected sensor test results[J]. International Journal of Hydrogen Energy, 34, 562-571(2009).

    [5] Sakthivel M, Weppner W. A portable limiting current solid-state electrochemical diffusion hole type hydrogen sensor device for biomass fuel reactors: engineering aspect[J]. International Journal of Hydrogen Energy, 33, 905-911(2008).

    [6] Zhang Y, Su Y Q, Chen J S et al. Progress and prospects of research on hydrogen sensors[J]. Chinese Science Bulletin, 68, 204-219(2023).

    [7] Ihokura K, Watson J[M]. The stannic oxide gas sensor: principles and applications(2017).

    [8] Butler M A, Ginley D S. Hydrogen sensing with palladium-coated optical fibers[J]. Journal of Applied Physics, 64, 3706-3712(1988).

    [9] Yang Y H, Wang H, Yang F L et al. Polarization-maintaining photonic crystal fiber hydrogen sensor based on Sagnac interferometer[J]. Acta Optica Sinica, 34, 0806004(2014).

    [10] Chen H C, Shen C Y, Chen X M et al. High-sensitivity optical fiber hydrogen sensor based on the metal organic frameworks of UiO-66-NH2[J]. Optics Letters, 46, 5405-5408(2021).

    [11] Lee S, Ryu B, Kim I et al. Temperature- and ambient pressure-independent sensing of hydrogen in fluids using cascaded interferometers incorporated in optical fibers[J]. Advanced Materials Technologies, 8, 2201273(2023).

    [12] Sutapun B, Tabib-Azar M, Kazemi A. Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing[J]. Sensors and Actuators B, 60, 27-34(1999).

    [13] Dai J X, Yang M H, Yu X et al. Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material[J]. Sensors and Actuators B, 174, 253-257(2012).

    [14] Hu X Y, Hu W B, Dai J X et al. Performance of fiber-optic hydrogen sensor based on locally coated π-shifted FBG[J]. IEEE Sensors Journal, 22, 23982-23989(2022).

    [15] Buric M, Chen T, Maklad M et al. Multiplexable low-temperature fiber Bragg grating hydrogen sensors[J]. IEEE Photonics Technology Letters, 21, 1594-1596(2009).

    [16] Qi L, Jin L, Guan B O. Optically heated fiber Bragg grating in active fibers for low temperature sensing application[J]. Proceedings of SPIE, 8924, 892404(2013).

    [17] Miyake K, Kaneko H, Sano M et al. Physical and electrochromic properties of the amorphous and crystalline tungsten oxide thick films prepared under reducing atmosphere[J]. Journal of Applied Physics, 55, 2747-2753(1984).

    [18] Sekimoto S, Nakagawa H, Okazaki S et al. A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide[J]. Sensors and Actuators B, 66, 142-145(2000).

    [19] Caucheteur C, Debliquy M, Lahem D et al. Catalytic fiber Bragg grating sensor for hydrogen leak detection in air[J]. IEEE Photonics Technology Letters, 20, 96-98(2008).

    [20] Dai J X, Yang M H, Yang Z et al. Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating[J]. Sensors and Actuators B, 190, 657-663(2014).

    [21] Wang J J, Dai J X, Hu W B et al. Improved performance of fiber-optic hydrogen sensor of porous Pt/WO3 based on ZIF-8[J]. International Journal of Hydrogen Energy, 51, 909-916(2024).

    [22] Dai J X, Peng W, Wang G P et al. Improved performance of fiber optic hydrogen sensor based on WO3-Pd2Pt-Pt composite film and self-referenced demodulation method[J]. Sensors and Actuators B, 249, 210-216(2017).

    [23] Yaacob M H, Breedon M, Kalantar-zadeh K et al. Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2[J]. Sensors and Actuators B, 137, 115-120(2009).

    [24] Dai J X, Ruan H B, Zhou Y C et al. Ultra-high sensitive fiber optic hydrogen sensor in air[J]. Journal of Lightwave Technology, 40, 6583-6589(2022).

    [25] Xiang F, Wang G P, Qin Y H et al. Improved performance of fiber Bragg hydrogen sensors assisted by controllable optical heating system[J]. IEEE Photonics Technology Letters, 29, 1233-1236(2017).

    [26] Xu B, Chang R, Li P et al. Reflective optical fiber sensor based on light polarization modulation for hydrogen sensing[J]. Journal of the Optical Society of America B, 36, 3471-3478(2019).

    [27] Cai S S, González-Vila Á, Zhang X J et al. Palladium-coated plasmonic optical fiber gratings for hydrogen detection[J]. Optics Letters, 44, 4483-4486(2019).

    [28] Cao R T, Wu J Y, Liang G Q et al. Functionalized PdAu alloy on nanocones fabricated on optical fibers for hydrogen sensing[J]. IEEE Sensors Journal, 20, 1922-1927(2020).

    [29] Alkhabet M M, Yaseen Z M, Eldirderi M M A et al. Palladium/graphene oxide nanocomposite for hydrogen gas sensing applications based on tapered optical fiber[J]. Materials, 15, 8167(2022).

    [30] Villatoro J, Monzon-Hernandez D. Low-cost optical fiber refractive-index sensor based on core diameter mismatch[J]. Journal of Lightwave Technology, 24, 1409-1413(2006).

    [31] Zhang Y N, Zhang L B, Han B et al. Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing[J]. Optics & Laser Technology, 102, 262-267(2018).

    [32] Wen L, Sun Z W, Zheng Q L et al. On-chip ultrasensitive and rapid hydrogen sensing based on plasmon-induced hot electron-molecule interaction[J]. Light: Science & Applications, 12, 76(2023).

    [33] Wang G, Feng W L. On-chip Mach-Zehnder interferometer sensor with a double-slot hybrid plasmonic waveguide for high-sensitivity hydrogen detection[J]. Optics Express, 31, 39500-39513(2023).

    [34] Xu T S, Zeng Z M, Huang X J et al. Pipeline leak detection based on variational mode decomposition and support vector machine using an interior spherical detector[J]. Process Safety and Environmental Protection, 153, 167-177(2021).

    [35] Fletcher R, Chandrasekaran M. SmartBall™: a new approach in pipeline leak detection[C], 117-133(2009).

    [36] Guo S X. Study on key technique of small leakage detection based on spherical leak detector for the long-distance oil pipeline[D](2015).

    [37] Huang X J, Li Z, Li J et al. Acoustic investigation of high-sensitivity spherical leak detector for liquid-filled pipelines[J]. Applied Acoustics, 174, 107790(2021).

    [38] Chen Q, Shen G D, Jiang J C et al. Effect of rubber washers on leak location for assembled pressurized liquid pipeline based on negative pressure wave method[J]. Process Safety and Environmental Protection, 119, 181-190(2018).

    [39] Li J, Chen S L, Huang X J et al. Review of leakage monitoring and quasi real-time detection technologies for long gas & oil pipelines[J]. Chinese Journal of Scientific Instrument, 37, 1747-1760(2016).

    [40] Lu H F, Iseley T, Behbahani S et al. Leakage detection techniques for oil and gas pipelines: state-of-the-art[J]. Tunnelling and Underground Space Technology, 98, 103249(2020).

    [41] Wang Z, Wang H C, Fu L et al. Pipeline detection method based on multiple-pressure sensor and negative pressure wave[J]. Transducer and Microsystem Technologies, 34, 115-118(2015).

    [42] Zhang T T, Tan Y F, Zhang X D et al. A novel hybrid technique for leak detection and location in straight pipelines[J]. Journal of Loss Prevention in the Process Industries, 35, 157-168(2015).

    [43] Jia Z G, Ren L, Li H N et al. Experimental study of pipeline leak detection based on hoop strain measurement[J]. Structural Control and Health Monitoring, 22, 799-812(2015).

    [44] Hou C X, Zhang E H. Pipeline leak detection based on double sensor negative pressure wave[J]. Applied Mechanics and Materials, 313/314, 1225-1228(2013).

    [45] Ferrante M, Brunone B, Meniconi S. Wavelets for the analysis of transient pressure signals for leak detection[J]. Journal of Hydraulic Engineering, 133, 1274-1282(2007).

    [46] Liu C W, Li Y X, Wang W C et al. Theoretical study and experimental study on leak detection for natural gas pipelines based on acoustic method[J]. Acta Acustica, 38, 372-381(2013).

    [47] Zhang J L, Zhang F, Wu W R et al. Experimental study on the leak detection of long distance pipeline by acoustic method[J]. Liaoning Chemical Industry, 42, 1431-1432, 1436(2013).

    [48] Yu D Q. Application of infrasonic leakage detection technology in Shengli Oilfield[J]. Oil-Gasfield Surface Engineering, 30, 70-71(2011).

    [49] Zheng X L, Wang Q, Xue S et al. Leakage localization for gas pipelines based on delay-and-sum using acoustic signal[J]. Chinese Journal of Scientific Instrument, 40, 241-249(2019).

    [50] Jia Z G, Ren L, Li H N et al. Pipeline leak localization based on FBG hoop strain sensors combined with BP neural network[J]. Applied Sciences, 8, 146(2018).

    [51] Meng Q X, Shen G T, Yu Y et al. An ultrasonic identification method of noised micro-leakage based on deep residual shrinkage networks[J]. Journal of Applied Acoustics, 41, 964-972(2022).

    [52] Ashry I, Mao Y, Wang B W et al. A review of distributed fiber-optic sensing in the oil and gas industry[J]. Journal of Lightwave Technology, 40, 1407-1431(2022).

    [53] Zhou Z M, Zhang J, Huang X S et al. Experimental study on distributed optical-fiber cable for high-pressure buried natural gas pipeline leakage monitoring[J]. Optical Fiber Technology, 53, 102028(2019).

    [54] Signorini A, Nannipieri T, Gabella L et al. Raman distributed temperature sensor for oil leakage detection in soil: a field trial and future trends[J]. Proceedings of SPIE, 9157, 91578Y(2014).

    [55] Xu Y, Li J, Zhang M J et al. Pipeline leak detection using Raman distributed fiber sensor with dynamic threshold identification method[J]. IEEE Sensors Journal, 20, 7870-7877(2020).

    [56] Galindez-Jamioy C A, López-Higuera J M. Brillouin distributed fiber sensors: an overview and applications[J]. Journal of Sensors, 2012, 204121(2012).

    [57] Inaudi D, Glisic B. Long-range pipeline monitoring by distributed fiber optic sensing[J]. Journal of Pressure Vessel Technology, 132, 011701(2010).

    [58] Liu C, Yao D X, Ou Y C et al. Multi-physical field joint monitoring of buried gas pipeline leakage based on BOFDA[J]. Measurement Science and Technology, 33, 105202(2022).

    [59] Maraval D, Gabet R, Jaouën Y et al. Slope-assisted BOTDR for pipeline vibration measurements[J]. Proceedings of SPIE, 10323, 103235Z(2017).

    [60] Li H J, Zhu H H, Tan D Y et al. Detecting pipeline leakage using active distributed temperature sensing: theoretical modeling and experimental verification[J]. Tunnelling and Underground Space Technology, 135, 105065(2023).

    [61] Ren L, Jiang T, Jia Z G et al. Pipeline corrosion and leakage monitoring based on the distributed optical fiber sensing technology[J]. Measurement, 122, 57-65(2018).

    [62] Jiang T, Ren L, Wang J J et al. Experimental investigation of fiber Bragg grating hoop strain sensor-based method for sudden leakage monitoring of gas pipeline[J]. Structural Health Monitoring, 20, 3024-3035(2021).

    [63] Stajanca P, Chruscicki S, Homann T et al. Detection of leak-induced pipeline vibrations using fiber-optic distributed acoustic sensing[J]. Sensors, 18, 2841(2018).

    [64] Yan B Q, Li H, Zhang K Q et al. Quantitative identification and localization for pipeline microleakage by fiber distributed acoustic sensor[J]. Journal of Lightwave Technology, 41, 5460-5467(2023).

    [65] Yang T T, Xiao Y B, Ran Z L et al. Design of a weak fiber Bragg grating acoustic sensing system for pipeline leakage monitoring in a nuclear environment[J]. IEEE Sensors Journal, 21, 22703-22711(2021).

    [66] Zhang J, Lian Z H, Zhou Z M et al. Numerical and experimental study on leakage detection for buried gas pipelines based on distributed optical fiber acoustic wave[J]. Measurement Science and Technology, 32, 125209(2021).

    [67] Chen Z, Zhang C C, Shi B et al. Detecting gas pipeline leaks in sandy soil with fiber-optic distributed acoustic sensing[J]. Tunnelling and Underground Space Technology, 141, 105367(2023).

    [68] Wang C, Liu Q W, Chen D et al. Monitoring pipeline leakage using fiber-optic distributed acoustic sensor[J]. Acta Optica Sinica, 39, 1006005(2019).

    [69] Zuo J C, Zhang Y, Xu H X et al. Pipeline leak detection technology based on distributed optical fiber acoustic sensing system[J]. IEEE Access, 8, 30789-30796(2020).

    [70] Duan Y X, Liang L, Tong X L et al. Application of pipeline leakage detection based on distributed optical fiber acoustic sensor system and convolutional neural network[J]. Journal of Physics D, 57, 105102(2024).

    [71] Wang G P, Dai J X, Yang M H. Fiber-optic hydrogen sensors: a review[J]. IEEE Sensors Journal, 21, 12706-12718(2021).

    [72] Guo H Y, Tang J G, Li X F et al. On-line writing identical and weak fiber Bragg grating arrays[J]. Chinese Optics Letters, 11, 030602(2013).

    [73] He J, Xu B J, Xu X Z et al. Review of femtosecond-laser-inscribed fiber Bragg gratings: fabrication technologies and sensing applications[J]. Photonic Sensors, 11, 203-226(2021).

    [74] Dai J X, Yin K, Chen Z N et al. Improved performance of a fiber-optic hydrogen sensor based on a controllable optical heating technology[J]. Optics Letters, 49, 2962-2965(2024).

    [75] Adegboye M A, Fung W K, Karnik A. Recent advances in pipeline monitoring and oil leakage detection technologies: principles and approaches[J]. Sensors, 19, 2548(2019).

    [76] Zhang X P, Zhang Y X, Wang L et al. Current status and future of research and applications for distributed fiber optic sensing technology[J]. Acta Optica Sinica, 44, 0106001(2024).

    [77] Huang L J, Zhou X, Fan X Y et al. Multi-mechanism distributed fiber-optic sensing technology[J]. Acta Optica Sinica, 44, 0106007(2024).

    [78] Tejedor J, Macias-Guarasa J, Martins H F et al. Towards detection of pipeline integrity threats using a smart fiber-optic surveillance system: PIT-STOP project blind field test results[J]. Proceedings of SPIE, 10323, 103231K(2017).

    [79] Lang X M. Pipeline leak detection and localization based on feature extraction and information fusion[D](2018).

    [80] Sun Q, Feng H, Yan X Y et al. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction[J]. Sensors, 15, 15179-15197(2015).

    [81] He Z Y, Liu Q W. Optical fiber distributed acoustic sensors: a review[J]. Journal of Lightwave Technology, 39, 3671-3686(2021).

    Cong Liu, Yu Wang, Yuxin Zhang, Sheng Chen, Wenbin Hu, Jixiang Dai, Minghong Yang. Progress in Optoelectronic Detection Technology for Safe Operation and Maintenance of Hydrogen Energy Storage and Transportation Equipment (Invited)[J]. Acta Optica Sinica (Online), 2024, 1(4): 0414001
    Download Citation