• Laser & Optoelectronics Progress
  • Vol. 56, Issue 17, 170614 (2019)
Yue Xu, Lei Zhang*, and Limin Tong**
Author Affiliations
  • College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • show less
    DOI: 10.3788/LOP56.170614 Cite this Article Set citation alerts
    Yue Xu, Lei Zhang, Limin Tong. Optofluidic Micro-Nanofiber Sensors[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170614 Copy Citation Text show less
    References

    [1] Brambilla G. Next-generation fibers: optical fibres go nano[J]. Laser Focus World, 43, 85-88(2007).

    [2] Guo X, Ying Y B, Tong L M. Photonic nanowires: from subwavelength waveguides to optical sensors[J]. Accounts of Chemical Research, 47, 656-666(2014).

    [3] Tong L M, Lou J Y, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides[J]. Optics Express, 12, 1025-1035(2004).

    [4] Wu X Q, Tong L M. Optical microfibers and nanofibers[J]. Nanophotonics, 2, 407-428(2013).

    [5] Wang L Z, Li L J, Tong L M. Optical microfibers and their applications in mode-locked fiber lasers[J]. Acta Optica Sinica, 39, 0126011(2019).

    [6] Lou J Y, Wang Y P, Tong L M. Microfiber optical sensors: a review[J]. Sensors, 14, 5823-5844(2014).

    [7] Tong L M. Micro/nanofibre optical sensors: challenges and prospects[J]. Sensors, 18, 903(2018).

    [8] Gu F X, Zhang L, Yin X F et al. Polymer single-nanowire optical sensors[J]. Nano Letters, 8, 2757-2761(2008).

    [9] Guo X, Tong L M. Supported microfiber loops for optical sensing[J]. Optics Express, 16, 14429-14434(2008).

    [10] Kenny R P, Birks T A, Oakley K P. Control of optical fibre taper shape[J]. Electronics Letters, 27, 1654-1656(1991).

    [11] Birks T A, Li Y W. The shape of fiber tapers[J]. Journal of Lightwave Technology, 10, 432-438(1992).

    [12] Grellier A J C, Zayer N K, Pannell C N. Heat transfer modelling in CO2 laser processing of optical fibres[J]. Optics Communications, 152, 324-328(1998).

    [13] Dimmick T E, Kakarantzas G, Birks T A et al. Carbon dioxide laser fabrication of fused-fiber couplers and tapers[J]. Applied Optics, 38, 6845-6848(1999).

    [14] Brambilla G. KoizumiF, Feng X, et al. Compound-glass optical nanowires[J]. Electronics Letters, 41, 400-402(2005).

    [15] Shi L, Chen X F, Liu H J et al. Fabrication of submicron-diameter silica fibers using electric strip heater[J]. Optics Express, 14, 5055-5060(2006).

    [16] Nagai R, Aoki T. Ultra-low-loss tapered optical fibers with minimal lengths[J]. Optics Express, 22, 28427-28436(2014).

    [17] Xu Y X, Fang W, Tong L M. Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision[J]. Optics Express, 25, 10434-10440(2017).

    [18] Sumetsky M, Dulashko Y, Hale A. Fabrication and study of bent and coiled free silica nanowires:self-coupling microloop optical interferometer[J]. Optics Express, 12, 3521-3531(2004).

    [19] Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics[J]. Nature, 442, 381-386(2006).

    [20] Monat C, Domachuk P, Eggleton B J. Integrated optofluidics:a new river of light[J]. Nature Photonics, 1, 106-114(2007).

    [21] Fan X D, White I M. Optofluidic microsystems for chemical and biological analysis[J]. Nature Photonics, 5, 591-597(2011).

    [22] Fan X D, Yun S H. The potential of optofluidic biolasers[J]. Nature Methods, 11, 141-147(2014).

    [23] Polynkin P, Polynkin A, Peyghambarian N et al. Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels[J]. Optics Letters, 30, 1273-1275(2005).

    [24] Myers F B, Lee L P. Innovations in optical microfluidic technologies for point-of-care diagnostics[J]. Lab on a Chip, 8, 2015-2031(2008).

    [25] Pires N M M, Dong T, Hanke U et al. . Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications[J]. Sensors, 14, 15458-15479(2014).

    [26] Chronis N, Lee L P. Total internal reflection-based biochip utilizing a polymer-filled cavity with a micromirror sidewall[J]. Lab on a Chip, 4, 125-130(2004).

    [27] Llobera A, Demming S, Wilke R et al. Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing[J]. Lab on a Chip, 7, 1560-1566(2007).

    [28] Rushworth C M, Jones G, Fischlechner M et al. On-chip cavity-enhanced absorption spectroscopy using a white light-emitting diode and polymer mirrors[J]. Lab on a Chip, 15, 711-717(2015).

    [29] Zhu J M, Shi Y, Zhu X Q et al. Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator[J]. Lab on a Chip, 17, 4025-4030(2017).

    [30] Lorenzi R, Jung Y M, Brambilla G. In-line absorption sensor based on coiled optical microfiber[J]. Applied Physics Letters, 98, 173504(2011).

    [31] Zhang L, Wang P, Xiao Y et al. Ultra-sensitive microfibre absorption detection in a microfluidic chip[J]. Lab on a Chip, 11, 3720-3724(2011).

    [32] Li Z Y, Xu Y X, Fang W et al. Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip[J]. Sensors, 15, 4890-4898(2015).

    [33] Du W B, Fang Q, He Q H et al. High-throughput nanoliter sample introduction microfluidic chip-based flow injection analysis system with gravity-driven flows[J]. Analytical Chemistry, 77, 1330-1337(2005).

    [34] Laurence T A, Weiss S. How to detect weak pairs[J]. Science, 299, 667-668(2003).

    [35] Zhang L, Li Z Y, Mu J X et al. Femtoliter-scale optical nanofiber sensors[J]. Optics Express, 23, 28408-28415(2015).

    [36] Wang S S, Pan X Y, Tong L M. Modeling of nanoparticle-induced Rayleigh-Gans scattering for nanofiber optical sensing[J]. Optics Communications, 276, 293-297(2007).

    [37] Yu X C, Li B B, Wang P et al. Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment[J]. Advanced Materials, 26, 7462-7467(2014).

    [38] Li K W, Liu G G, Wu Y H et al. Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum[J]. Talanta, 120, 419-424(2014).

    [39] Rao Y J. In-fibre Bragg grating sensors[J]. Measurement Science and Technology, 8, 355-375(1997).

    [40] Kersey A D, Davis M A, Patrick H J et al. Fiber grating sensors[J]. Journal of Lightwave Technology, 15, 1442-1463(1997).

    [41] Xuan H F, Jin W, Zhang M. CO2 laser induced long period gratings in optical microfibers[J]. Optics Express, 17, 21882-21890(2009).

    [42] Ran Y, Tan Y N, Sun L P et al. 193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing[J]. Optics Express, 19, 18577-18583(2011).

    [43] Fang X, Liao C R, Wang D N. Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing[J]. Optics Letters, 35, 1007-1009(2010).

    [44] Liu Y X, Meng C, Zhang A P et al. Compact microfiber Bragg gratings with high-index contrast[J]. Optics Letters, 36, 3115-3117(2011).

    [45] Liu Y G, Zhang W. Temperature characteristics of micro-nano fiber Bragg grating surrounded with liquids[J]. Laser & Optoelectronics Progress, 54, 040605(2017).

    [46] Peng X L, Li B, Li Y L. Research progress of refractive index and concentration sensors based on micro-nanofiber Bragg grating[J]. Laser & Optoelectronics Progress, 55, 120010(2018).

    [47] Sun D D, Guo T, Ran Y et al. In-situ DNA hybridization detection with a reflective microfiber grating biosensor[J]. Biosensors and Bioelectronics, 61, 541-546(2014).

    [48] Liu T, Liang L L, Xiao P et al. A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating[J]. Biosensors and Bioelectronics, 100, 155-160(2018).

    [49] Xu F, Brambilla G, Lu Y Q. A microfluidic refractometric sensor based on gratings in optical fibre microwires[J]. Optics Express, 17, 20866-20871(2009).

    [50] Vollmer F, Arnold S. Whispering-gallery-mode biosensing: label-free detection down to single molecules[J]. Nature Methods, 5, 591-596(2008).

    [51] Foreman M R, Swaim J D, Vollmer F. Whispering gallery mode sensors[J]. Advances in Optics and Photonics, 7, 168-240(2015).

    [52] Arnold S, Khoshsima M, Teraoka I et al. Shift of whispering-gallery modes in microspheres by protein adsorption[J]. Optics Letters, 28, 272-274(2003).

    [53] Boyd R W, Heebner J E. Sensitive disk resonator photonic biosensor[J]. Applied Optics, 40, 5742-5747(2001).

    [54] Chandrahalim H, Rand S C, Fan X D. Fusion of renewable ring resonator lasers and ultrafast laser inscribed photonic waveguides[J]. Scientific Reports, 6, 32668(2016).

    [55] Sumetsky M, Dulashko Y, Fini J M et al. Optical microfiber loop resonator[J]. Applied Physics Letters, 86, 161108(2005).

    [56] Jiang X S, Tong L M, Vienne G et al. Demonstration of optical microfiber knot resonators[J]. Applied Physics Letters, 88, 223501(2006).

    [57] Li W, Wang P, Hu Z F et al. Fusion splicing soft glass microfibers for photonic devices[J]. IEEE Photonics Technology Letters, 23, 831-833(2011).

    [58] Sumetsky M. Optical fiber microcoil resonator[J]. Optics Express, 12, 2303-2316(2004).

    [59] Xu F, Brambilla G. Demonstration of a refractometric sensor based on optical microfiber coil resonator[J]. Applied Physics Letters, 92, 101126(2008).

    [60] Wu X Q, Wang Y P, Tong L M. Optical microfibers and their applications[J]. Physics, 44, 356-365(2015).

    [61] White I M, Oveys H, Fan X D. Liquid-core optical ring-resonator sensors[J]. Optics Letters, 31, 1319-1321(2006).

    [62] Zhu H Y, White I M, Suter J D et al. Analysis of biomolecule detection with optofluidic ring resonator sensors[J]. Optics Express, 15, 9139-9146(2007).

    [63] White I M, Gohring J, Fan X D. SERS-based detection in an optofluidic ring resonator platform[J]. Optics Express, 15, 17433-17442(2007).

    [64] Tang T, Wu X, Liu L Y et al. Packaged optofluidic microbubble resonators for optical sensing[J]. Applied Optics, 55, 395-399(2016).

    [65] Li Z H, Zhu C G, Guo Z H et al. Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator[J]. Micromachines, 9, 274(2018).

    [66] Bianucci P. Optical microbottle resonators for sensing[J]. Sensors, 16, 1841(2016).

    [67] Li Y H, Tong L M. Mach-Zehnder interferometers assembled with optical microfibers or nanofibers[J]. Optics Letters, 33, 303-305(2008).

    [68] Wo J H, Wang G H, Cui Y et al. Refractive index sensor using microfiber-based Mach-Zehnder interferometer[J]. Optics Letters, 37, 67-69(2012).

    [69] Liao C R, Wang D N, Wang Y. Microfiber in-line Mach-Zehnder interferometer for strain sensing[J]. Optics Letters, 38, 757-759(2013).

    [70] Yao B C, Wu Y, Cheng Y et al. All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide[J]. Sensors and Actuators B: Chemical, 194, 142-148(2014).

    [71] Liang L L, Jin L, Ran Y et al. Interferometric detection of microRNAs using a capillary optofluidic sensor[J]. Sensors and Actuators B: Chemical, 242, 999-1006(2017).

    [72] Huang K J, Yang S Y, Tong L M. Modeling of evanescent coupling between two parallel optical nanowires[J]. Applied Optics, 46, 1429-1434(2007).

    [73] Guo X, Qiu M, Bao J M et al. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits[J]. Nano Letters, 9, 4515-4519(2009).

    [74] Yan S C, Liu Z Y, Li C et al. “Hot-wire” microfluidic flowmeter based on a microfiber coupler[J]. Optics Letters, 41, 5680-5683(2016).

    [75] Jiang Y X, Fang Z J, Du Y Q et al. Highly sensitive temperature sensor using packaged optical microfiber coupler filled with liquids[J]. Optics Express, 26, 356-366(2018).

    Yue Xu, Lei Zhang, Limin Tong. Optofluidic Micro-Nanofiber Sensors[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170614
    Download Citation