• Matter and Radiation at Extremes
  • Vol. 6, Issue 6, 068202 (2021)
Lingping Konga) and Gang Liu
Author Affiliations
  • Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
  • show less
    DOI: 10.1063/5.0071856 Cite this Article
    Lingping Kong, Gang Liu. Synchrotron-based infrared microspectroscopy under high pressure: An introduction[J]. Matter and Radiation at Extremes, 2021, 6(6): 068202 Copy Citation Text show less
    References

    [1] P. R.Griffiths, J. A.De Haseth. Fourier Transform Infrared Spectrometry(2006).

    [2] H.Okamura, T.Nanba, T.Moriwaki, Y.Ikemoto. Infrared spectroscopy techniques for studying the electronic structures of materials under high pressure. Jpn. J. Appl. Phys., Part 1, 56, 05FA11(2017).

    [3] R.Bini, G.Pratesi. High-pressure infrared study of solid methane: Phase diagram up to 30 GPa. Phys. Rev. B, 55, 14800-14809(1997).

    [4] X.Xi, C.Martin, G. L.Carr, Z.Liu, H.Berger, C.Ma, Z.Chen, D. B.Tanner, W.Ku. Signatures of a pressure-induced topological quantum phase transition in BiTeI. Phys. Rev. Lett., 111, 155701(2013).

    [5] P.Dumas, F.Occelli, P.Loubeyre, C.Pépin. Synthesis of lithium polyhydrides above 130 GPa at 300 K. Proc. Natl. Acad. Sci. U. S. A., 112, 7673-7676(2015).

    [6] J. A.Schlueter, T. V.Brinzari, K. R.O’Neal, A. P.Litvinchuk, J. L.Manson, Z.Liu, J. L.Musfeldt. Local lattice distortions in Mn[N(CN)2]2 under pressure. Inorg. Chem., 55, 1956-1961(2016).

    [7] Y.Bando, Z.Liu, T.Sekiguchi, H.-G.Yu, J.Wang, C.Zhi, W.-Q.Han. Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes. Nano Lett., 8, 491-494(2008).

    [8] Z.Zhao, H. Y.Hwang, G.Xu, G. K.Solanki, Q.Zeng, H.Zhang, H.Yuan, S.Wang, Y.Cui, Y.Lin, K. D.Patel, Z.Liu, W. L.Mao. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide. Nat. Commun., 6, 7312(2015).

    [9] M.Newville, A. H.Shen, G. R.Rossman, O.Tschauner, C.Ma, V. B.Prakapenka, S.Huang, K.Tait, A.Lanzirotti, E.Greenberg, D.Zhang. Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth’s deep mantle. Science, 359, 1136-1139(2018).

    [10] P.Dera, M.Somayazulu, P.Liermann, H.-k.Mao, Z.Liu, R. J.Hemley, S. A.Gramsch, A. F.Goncharov, W.Yang. Pressure-induced bonding and compound formation in xenon–hydrogen solids. Nat. Chem., 2, 50-53(2010).

    [11] F.Wan, P.Wu, X.Chen, N.Kong, Y.Yao, S.Ling, C.Peng, J.Gong, K.Zheng, W.Dai, C.Su. A cuboid spider silk: Structure-function relationship and polypeptide signature. Macromol. Rapid Commun., 41, 1900583(2020).

    [12] C.Ye, M. J.Buehler, Y.Fan, K.Zheng, Y.Tang, S.Ling, J.Zhong, D. L.Kaplan, W.Zhang. Tensan silk-inspired hierarchical fibers for smart textile applications. ACS Nano, 12, 6968-6977(2018).

    [13] F.Guan, Z.Liu, X. G.Hong, T. S.Liu, Z.Chen, G. D.Gu, G. L.Carr, X.Du, J. A.Schneeloch, W.Ku, X.-G.He, R. D.Zhong, X.Xi. Bulk signatures of pressure-induced band inversion and topological phase transitions in Pb1−xSnxSe. Phys. Rev. Lett., 113, 096401(2014).

    [14] T.Nanba, M.Matsunami, A.Ochiai, H.Okamura. Pressure tuning of an ionic insulator into a heavy electron metal: An infrared study of YbS. Phys. Rev. Lett., 103, 237202(2009).

    [15] A.Dewaele, M.Mezouar, P.Loubeyre, P.Dumas. Oxygen impurities reduce the metallization pressure of xenon. Phys. Rev. B, 86, 014103(2012).

    [16] A.Irizawa, S.Suga, K.Shimai, G.Isoyama, K.Sato. Direct observation of a pressure-induced metal-insulator transition in LiV2O4 by optical studies. Phys. Rev. B, 84, 235116(2011).

    [17] M. J.Rice. Organic linear conductors as systems for the study of electron-phonon interactions in the organic solid state. Phys. Rev. Lett., 37, 36-39(1976).

    [18] E.Cappelluti, K. S.Novoselov, I.Crassee, L.Benfatto, A. K.Geim, P.Blake, A. B.Kuzmenko, D.van der Marel. Gate tunable infrared phonon anomalies in bilayer graphene. Phys. Rev. Lett., 103, 116804(2009).

    [19] G.Grüner, M.Dressel. Electrodynamics of Solids(2002).

    [20] G.Burns. Solid State Physics(1985).

    [21] M.Pravica, M.Bishop, J.Coe, R.Chellappa et al. 1,1-diamino-2,2-dinitroethylene under high-pressure-high-temperature. Bull. Am. Phys. Soc., 137, 174304(2012).

    [22] E. T. J.Nibbering, A.Paarmann, M. L.Cowan, R. J.Dwayne Miller, N.Huse, T.Elsaesser, D.Kraemer. Temperature dependence of the two-dimensional infrared spectrum of liquid H2O. Proc. Natl. Acad. Sci. U. S. A., 105, 437-442(2008).

    [23] M.Feng, Q.Xia, P.Zhang, Y.Yang. Temperature dependence of IR absorption of OH species in clinopyroxene. Am. Mineral., 95, 1439-1443(2010).

    [24] K. W.Post, L.He, D. N.Basov, X.Kou, K. L.Wang, B. C.Chapler. Thickness-dependent bulk electronic properties in Bi2Se3 thin films revealed by infrared spectroscopy. Phys. Rev. B, 88, 075121(2013).

    [25] D.Luckhaus, R.Signorell, G.Firanescu. Size effects in the infrared spectra of NH3 ice nanoparticles studied by a combined molecular dynamics and vibrational exciton approach. J. Chem. Phys., 125, 144501(2006).

    [26] Y.Chen, Y.-Y.Hu, G.Wang, W.Huang, A.Facchetti, J.Tedesco, M. J.Bedzyk, L.Zeng, D. M.DeLongchamp, Y.Wang, S.Patel, T. J.Marks, S.Mukherjee, P.-H.Chien, B.Wang, K.McMillen, Y.Gao, J. E.Medvedeva. Experimental and theoretical evidence for hydrogen doping in polymer solution-processed indium gallium oxide. Proc. Natl. Acad. Sci. U. S. A., 117, 18231-18239(2020).

    [27] J. L.Giorgetta, B.Lagarde, O.Chubar, F.Polack, S.Lefrancois, P.Dumas. Synchrotron infrared microscopy at the French Synchrotron Facility SOLEIL. Infrared Phys. Technol., 49, 152-160(2006).

    [28] E.Levenson, M. C.Martin, P.Lerch. Spatial resolution limits for synchrotron-based spectromicroscopy in the mid- and near-infrared. J. Synchrotron Radiat., 15, 323-328(2008).

    [29] U.Schade, M. C.Martin, P.Lerch, P.Dumas. Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy. Trends Anal. Chem., 29, 453-463(2010).

    [30] S.Ferrer, N.Benseny-Cases, S.Lefran?ois, I.Yousef, G.García, T.Ducic, P.Dumas, T.Moreno, M.Quispe, L.Ribó, I.?ics, M.Kreuzer, G.Ellis, A.Crisol, M. A. G.Aranda, J.Nicolas. MIRAS: The infrared synchrotron radiation beamline at ALBA. Synchrotron Radiat. News, 30, 4-6(2017).

    [31] T.Ji, M.Chen, Z.Zhang, H.Zhu, T.Xiao, H.Xu, W.Peng, Y.Tong. The status of the first infrared beamline at Shanghai Synchrotron Radiation Facility. Nucl. Instrum. Methods Phys. Res., Sect. A, 788, 116-121(2015).

    [32] W.Yang, L.Kong, G.Liu, H.-k.Mao. Pressure engineering of photovoltaic perovskites. Mater. Today, 27, 91-106(2019).

    [33] W. D.Duncan, G. P.Williams. Infrared synchrotron radiation from electron storage rings. Appl. Opt., 22, 2914-2923(1983).

    [34] R. A.Bosch. Extraction of edge radiation within a straight section of Aladdin. Rev. Sci. Instrum., 73, 1423-1426(2002).

    [35] A.Nucara, Y.-L.Mathis, S.Lupi, P.Roy, A.Gerschel, P.Calvani, B.Tremblay. Magnetic field discontinuity as a new brighter source of infrared synchrotron radiation. Phys. Rev. Lett., 80, 1220-1223(1998).

    [36] L. M.Miller, M. J.Tobin, P.Dumas. Challenges in biology and medicine with synchrotron infrared light. Acta Phys. Pol., A, 115, 446-454(2009).

    [37] G. L.Carr, R.Bhargava, O.Chubar, P.Dumas, and R.Bhargava, I. W.Levin. Spectrochemical Analysis Using Infrared Multichannel Detectors(2006).

    [38] C.Li, Z.Qi, X.Wang, C.Hu. The new infrared beamline at NSRL. Infrared Phys. Technol., 105, 103200(2020).

    [39] Bruker Corporation. Detector characterization using FTIR spectrometer. Application Note AN M161(2019).

    [40] H. A.Padmore, C. J.Hirschmugl, W. R.Mckinney et al. First infrared beamline at the ALS: Design, construction, and initial commissioning. Proc. SPIE, 3153, 59-67(1997).

    [41] T.Moriwaki, S.Takahashi, H.Kimura et al. Infrared beamline BL43IR at SPring-8: Design and commissioning. Nucl. Instrum. Methods Phys. Res., Sect. A, 467–468, 441-444(2001).

    [42] S.Kimura, H.Kimura, Y.Yoshimatsu, T.Nanba, T.Takahashi, T.Moriwaki, Y.Kondo, K.Fukui, T.Ishikawa. Front end and optics of infrared beamline at SPring-8. Nucl. Instrum. Methods Phys. Res., Sect. A, 467–468, 437-440(2001).

    [43] N.Nagai, K.Shinoda, S.Kimura, K.Kobayashi, H.Kimura, T.Nanba, T.Moriwaki, M.Matsunami, Y.Ikemoto, T.Hirono. Infrared microspectroscopy station at BL43IR of SPring-8. Infrared Phys. Technol., 45, 369-373(2004).

    [44] M.Rouzières, Z. M.Qi, O.Chubar, R.Pascale. The AILES infrared beamline on the third generation Synchrotron Radiation Facility SOLEIL. Infrared Phys. Technol., 49, 139-146(2006).

    [45] D.Creagh, P.Dumas, J.McKinlay. The design of the infrared beamline at the Australian synchrotron. Vib. Spectrosc., 41, 213-220(2006).

    [46] C. G.Ryan, D. D.Cohen, D. J.Paterson, J. W.Boldeman. Microspectroscopy beamline at the Australian synchrotron. AIP Conf. Proc., 879, 864-867(2007).

    [47] P.Calvani, L.Quaroni, A.Perucchi, A.Nucara, S.Lupi, M.Kiskinova, M.Ortolani. Performance of SISSI, the infrared beamline of the ELETTRA storage ring. J. Opt. Soc. Am. B, 24, 959-964(2007).

    [48] T.May, T.Ellis, R.Reininger. Mid-infrared spectromicroscopy beamline at the Canadian Light Source. Nucl. Instrum. Methods Phys. Res., Sect. A, 582, 111-113(2007).

    [49] T.Moreno, F.Makahleh, S.Lefran?ois, I.Yousef, H.Hoorani, A.Nadji, P.Dumas. Simulation and design of an infrared beamline for SESAME (synchrotron-light for experimental science and applications in the Middle East). Nucl. Instrum. Methods Phys. Res., Sect. A, 673, 73-81(2012).

    [50] B.Chae, Y. D.Yun, S.Lefran?ois, C. K.Ryu, H.-Y.Kim, P.Dumas. 12D IRS: The infrared synchrotron radiation beamline at PAL. Synchrotron Radiat. News, 30, 6-8(2017).

    [51] H.Zhu, T.Xiao, Z.Zhang, M.Chen, T.Ji, Y.Li, W.Peng, M.Zhang, Y.Tong. Performance of the infrared microspectroscopy station at SSRF. Infrared Phys. Technol., 67, 521-525(2014).

    [52] J. J.Zhong, X. J.Zhou, Y. C.Lin, W. W.Peng, M.Chen, Y. Z.Tang, H. C.Zhu, T.Ji. New status of the infrared beamlines at SSRF. Nucl. Sci. Tech., 30, 182(2019).

    [53] L.Kong, A. F.Goncharov, H. K.Mao. High-pressure integrated synchrotron infrared spectroscopy system at the Shanghai Synchrotron Radiation Facility. Rev. Sci. Instrum., 90, 093905(2019).

    [54] J.Loveday, S.Klotz. High Pressure Physics(2012).

    [55] Y.Haga, N.Tateiwa. Evaluations of pressure-transmitting media for cryogenic experiments with diamond anvil cell. Rev. Sci. Instrum., 80, 123901(2009).

    [56] T.Str?ssle, S.Klotz, K.Takemura, T.Hansen. Freezing of glycerol-water mixtures under pressure. J. Phys.: Condens. Matter, 24, 325103(2012).

    [57] W.Zhang, Z.Liu, D. L.Heinz, C. T.Seagle. Far-infrared dielectric and vibrational properties of nonstoichiometric wüstite at high pressure. Phys. Rev. B, 79, 014104(2009).

    [58] H. B.Huntington, E.Wigner. On the possibility of a metallic modification of hydrogen. J. Chem. Phys., 3, 764-770(1935).

    [59] A.Sudb?, N. W.Ashcroft, E.Babaev. A superconductor to superfluid phase transition in liquid metallic hydrogen. Nature, 431, 666-668(2004).

    [60] S. A.Bonev, T.Ogitsu, E.Schwegler, G.Galli. A quantum fluid of metallic hydrogen suggested by first-principles calculations. Nature, 431, 669-672(2004).

    [61] H.-k.Mao, R. J.Hemley. Ultrahigh-pressure transitions in solid hydrogen. Rev. Mod. Phys., 66, 671-692(1994).

    [62] J. M.McMahon, C.Pierleoni, D. M.Ceperley, M. A.Morales. The properties of hydrogen and helium under extreme conditions. Rev. Mod. Phys., 84, 1607-1653(2012).

    [63] H.-K.Mao, Y.Ding, L.Wang, B.Li, X.-J.Chen. Solids, liquids, and gases under high pressure. Rev. Mod. Phys., 90, 015007(2018).

    [64] R.Letoullec, J. P.Pinceaux, P.Loubeyre. Properties of H2 under strong compression in a Ne matrix. Phys. Rev. Lett., 67, 3271-3274(1991).

    [65] M.Hanfland, H. K.Mao, G. P.Williams, R. J.Hemley. Synchrotron infrared spectroscopy at megabar pressures-vibrational dynamics of hydrogen to 180 GPa. Phys. Rev. Lett., 69, 1129-1132(1992).

    [66] R. J.Hemley, J. H.Eggert, H.-k.Mao. Observation of a two-vibron bound-to-unbound transition in solid deuterium at high pressure. Phys. Rev. Lett., 70, 2301-2304(1993).

    [67] S. K.Sharma, H. K.Mao, P. M.Bell. Raman measurements of hydrogen in the pressure range 0.2-630 kbar at room temperature. Phys. Rev. Lett., 44, 886-888(1980).

    [68] A. F.Goncharov, I. I.Mazin, H.-k.Mao, J. H.Eggert, R. J.Hemley. Raman excitations and orientational ordering in deuterium at high pressure. Phys. Rev. B, 54, R15590-R15593(1996).

    [69] Z.Liu, R.Boehler, M.Ahart, R. J.Hemley, C.-s.Zha. High-pressure measurements of hydrogen phase IV using synchrotron infrared spectroscopy. Phys. Rev. Lett., 110, 217402(2013).

    [70] J. S.Tse, R. J.Hemley, H.Liu, C.-s.Zha. Melting and high PT transitions of hydrogen up to 300 GPa. Phys. Rev. Lett., 119, 075302(2017).

    [71] R.Pucci, N. H.March, F.Siringo. Maximum in vibrational frequency shift of a hydrogen molecule in solid hydrogen under pressure. J. Phys. Chem. Solids, 47, 231-236(1986).

    [72] C.Ji, I.Chuvashova, A. F.Goncharov, H.-k.Mao. Intermolecular coupling and fluxional behavior of hydrogen in phase IV. Proc. Natl. Acad. Sci. U. S. A., 116, 25512-25515(2019).

    [73] F.Occelli, P.Dumas, P.Loubeyre. Hydrogen phase IV revisited via synchrotron infrared measurements in H2 and D2 up to 290 GPa at 296 K. Phys. Rev. B, 87, 134101(2013).

    [74] P. P.Kong, A. P.Drozdov, M. I.Eremets, H.Wang. Semimetallic molecular hydrogen at pressure above 350 GPa. Nat. Phys., 15, 1246-1249(2019).

    [75] I. F.Silvera, E.Sterer, N. H.Chen. Extended infrared studies of high pressure hydrogen. Phys. Rev. Lett., 76, 1663-1666(1996).

    [76] Z.Liu, R. J.Hemley, C.-S.Zha. Synchrotron infrared measurements of dense hydrogen to 360 GPa. Phys. Rev. Lett., 108, 146402(2012).

    [77] P.Dumas, P.Loubeyre, F.Occelli. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature, 577, 631-635(2020).

    [78] H.-k.Mao, G.Shen, M.Somayazulu, A. F.Goncharov, R. J.Hemley, E.Gregoryanz. Raman, infrared, and x-ray evidence for new phases of nitrogen at high pressures and temperatures. Phys. Rev. B, 66, 224108(2002).

    [79] L.Ulivi, J.Kreutz, R.Bini, H. J.Jodl. High-pressure phases of solid nitrogen by Raman and infrared spectroscopy. J. Chem. Phys., 112, 8522-8529(2000).

    [80] H.-k.Mao, Z.Liu, A. F.Goncharov, E.Gregoryanz, R. J.Hemley. Optical evidence for a nonmolecular phase of nitrogen above 150 GPa. Phys. Rev. Lett., 85, 1262-1265(2000).

    [81] S. I.Shylin, M. I.Eremets, V.Ksenofontov, A. P.Drozdov, I. A.Troyan. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73-76(2015).

    [82] L.Balicas, M.Tkacz, P. P.Kong, D. E.Graf, M. I.Eremets, E.Greenberg, V. B.Prakapenka, D. A.Knyazev, V. S.Minkov, S.Mozaffari, F. F.Balakirev, S. P.Besedin, A. P.Drozdov, M. A.Kuzovnikov. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569, 528-531(2019).

    [83] K.Vencatasamy, H.Vindana, M.Debessai, E.Snider, K. V.Lawler, R. P.Dias, N.Dasenbrock-Gammon, R.McBride, A.Salamat. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 586, 373-377(2020).

    [84] D.Duan, B.Liu, W.Tian, Z.Zhao, H.Yu, Y.Liu, F.Tian, X.Huang, T.Cui, D.Li. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep., 4, 6968(2015).

    [85] C. J.Pickard, M.Calandra, F.Mauri, Y.Ma, Y.Zhang, R. J.Needs, H.Liu, Y.Li, J.Nelson, I.Errea. High-pressure hydrogen sulfide from first principles: A strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett., 114, 157004(2015).

    [86] I. I.Mazin, M. J.Mehl, C. S.Hellberg, N.Bernstein, M. D.Johannes. What superconducts in sulfur hydrides under pressure and why. Phys. Rev. B, 91, 060511(2015).

    [87] W. E.Pickett, D. A.Papaconstantopoulos, B. M.Klein, M. J.Mehl. Cubic H3S around 200 GPa: An atomic hydrogen superconductor stabilized by sulfur. Phys. Rev. B, 91, 184511(2015).

    [88] A.Sanna, E. K. U.Gross, J. A.Flores-Livas. High temperature superconductivity in sulfur and selenium hydrides at high pressure. Eur. Phys. J. B, 89, 63(2016).

    [89] M. I.Eremets, A.Drozdov, F.Capitani, J.-B.Brubach, P.Roy, E. J.Nicol, J. P.Carbotte, T.Timusk, B.Langerome. Spectroscopic evidence of a new energy scale for superconductivity in H3S. Nat. Phys., 13, 859-863(2017).

    [90] S. L.James. Metal-organic frameworks. Chem. Soc. Rev., 32, 276-288(2003).

    [91] H.Furukawa, M.O’Keeffe, O. M.Yaghi, K. E.Cordova. The chemistry and applications of metal-organic frameworks. Science, 341, 1230444(2013).

    [92] J.Lee, O. K.Farha, S. T.Nguyen, J.Roberts, J. T.Hupp, K. A.Scheidt. Metal–organic framework materials as catalysts. Chem. Soc. Rev., 38, 1450-1459(2009).

    [93] K.Leong, O. K.Farha, J. T.Hupp, M.Allendorf, L. E.Kreno, R. P.Van Duyne. Metal–organic framework materials as chemical sensors. Chem. Rev., 112, 1105-1125(2012).

    [94] Y.Yue, B.Chen, Y.Cui, G.Qian. Luminescent functional metal–organic frameworks. Chem. Rev., 112, 1126-1162(2012).

    [95] J.-R.Li, H.-C.Zhou, R. J.Kuppler. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev., 38, 1477-1504(2009).

    [96] L.Zhu, Y.-B.Zhang. Crystallization of covalent organic frameworks for gas storage applications. Molecules, 22, 1149(2017).

    [97] J.?ejka. Metal-organic frameworks: Applications from catalysis to gas storage. Edited by David Farrusseng. Angew. Chem., 51, 4782-4783(2012).

    [98] J.Xu, Y.Hu, Y.Song, Z.Liu, Y.Huang. Evidence of pressure enhanced CO2 storage in ZIF-8 probed by FTIR spectroscopy. J. Am. Chem. Soc., 135, 9287-9290(2013).

    [99] F.Borondics, B.Joseph, G.Blanita, F.Capitani, A.Celeste, O.Grad, A.Paolone, J.-P.Itié, C.Zlotea. Mesoporous metal–organic framework MIL-101 at high pressure. J. Am. Chem. Soc., 142, 15012-15019(2020).

    [100] H. J.Snaith, S. D.Stranks. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol., 10, 391-402(2015).

    [101] C.Yi, N.Ashari-Astani, J.Luo, C.Gr?tzel, S.Meloni, A.Boziki, M.Gr?tzel, U.R?thlisberger, S. M.Zakeeruddin. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci., 9, 656-662(2016).

    [102] M. R.Filip, G. E.Eperon, F.Giustino, H. J.Snaith. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun., 5, 5757(2014).

    [103] W.Zhang, H. J.Snaith, G. E.Eperon. Metal halide perovskites for energy applications. Nat. Energy, 1, 16048(2016).

    [104] D.Zhang, W.Yang, H. K.Mao, J.Gong, Q.Hu, Z.Liu, G.Liu, T.Xu, R. D.Schaller, L.Kong. Pressure-induced bandgap optimization in lead-based perovskites with prolonged carrier lifetime and ambient retainability. Adv. Funct. Mater., 27, 1604208(2017).

    [105] P.Guo, Z.Cai, Q.Hu, H.-k.Mao, C. C.Stoumpos, Z.Liu, R. D.Schaller, M. G.Kanatzidis, L.Kong, G.Liu, D. J.Gosztola. Two regimes of bandgap red shift and partial ambient retention in pressure-treated two-dimensional perovskites. ACS Energy Lett., 2, 2518-2524(2017).

    [106] T.Xu, S.Yan, L.Kong, Z.Liu, G.Liu, R. D.Schaller, Q.Hu, J.Gong, W.Yang, M. G.Kanatzidis, H.-k.Mao, C. C.Stoumpos. Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. Proc. Natl. Acad. Sci. U. S. A., 115, 8076-8081(2018).

    [107] M. G.Kanatzidis, W.Yang, G.Liu, L.Mao, Q.Hu, M.Chen, X.Lü, H.-k.Mao, J.Gong, L.Kong. Highly tunable properties in pressure-treated two-dimensional Dion–Jacobson perovskites. Proc. Natl. Acad. Sci. U. S. A., 117, 16121-16126(2020).

    [108] R. D.Schaller, W.Yang, T.Xu, D.Zhang, K.Zhu, Z.Liu, H.-k.Mao, Y.Tang, L.Kong, C.Wang, P.Dera, J.Gong, G.Liu, S.-H.Wei, Q.Hu. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites. Proc. Natl. Acad. Sci. U. S. A., 113, 8910-8915(2016).

    [109] W. L.Mao, H. I.Karunadasa, A.Jaffe, Y.Lin. Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3. J. Am. Chem. Soc., 139, 4330-4333(2017).

    [110] W.Yang, A.Sano‐Furukawa, J.Gong, F.Capitani, L.Kong, H. k.Mao, Q.Hu, A.Celeste, T.Hattori, N.Li, G.Liu. Suppressed lattice disorder for large emission enhancement and structural robustness in hybrid lead iodide perovskite discovered by high-pressure isotope effect. Adv. Funct. Mater., 31, 2009131(2021).

    [111] A.Kavner. Elasticity and strength of hydrous ringwoodite at high pressure. Earth Planet. Sci. Lett., 214, 645-654(2003).

    [112] C.Dupas-Bruzek, S.-i.Karato, D. C.Rubie. Plastic deformation of silicate spinel under the transition-zone conditions of the Earth’s mantle. Nature, 395, 266-269(1998).

    [113] D. L.Kohlstedt, S.Mei. Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J. Geophys. Res., 105, 21471-21481(2000).

    [114] Q.Williams, H. P.Scott. An infrared spectroscopic study of lawsonite to 20 GPa. Phys. Chem. Miner., 26, 437-445(1999).

    [115] T. B.Ballaran, R. J.Angel. Equation of state and high-pressure phase transitions in lawsonite. Eur. J. Mineral., 15, 241-246(2003).

    [116] D. R.Allan, A. R.Pawley. A high-pressure structural study of lawsonite using angle-dispersive powder-diffraction methods with synchrotron radiation. Mineral. Mag., 65, 41-58(2001).

    [117] Z.Liu, T. W.Becker, B.Schmandt, S. D.Jacobsen, K. G.Dueker. Dehydration melting at the top of the lower mantle. Science, 344, 1265-1268(2014).

    [118] Y. W.Fei, A. M.Hofmeister, M. K.Müller, Z. X.Liu. High-pressure IR-spectra and the thermodynamic properties of chloritoid. Am. Mineral., 87, 609-622(2002).

    [119] L.Baldassarre, P.Postorino, D.Di Castro, E.Arcangeletti, S.Lupi, A.Perucchi, V. A.Sidorov, D.Nicoletti. Electrodynamics near the metal-to-insulator transition in V3O5. Phys. Rev. B, 75, 245108(2007).

    Lingping Kong, Gang Liu. Synchrotron-based infrared microspectroscopy under high pressure: An introduction[J]. Matter and Radiation at Extremes, 2021, 6(6): 068202
    Download Citation