• Laser & Optoelectronics Progress
  • Vol. 52, Issue 6, 60005 (2015)
Wu Yuan1、2、*, Wang Bingjie1、2, and Wang Yuncai1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop52.060005 Cite this Article Set citation alerts
    Wu Yuan, Wang Bingjie, Wang Yuncai. Research Progress in Applications of Chaotic Laser[J]. Laser & Optoelectronics Progress, 2015, 52(6): 60005 Copy Citation Text show less
    References

    [1] Arecchi F, Meueei R, Puccioni G, et al.. Experimental devidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser[J]. Phys Rev Lett, 1982, 49(17): 1217-1220.

    [2] Weiss C O, Godone A, Olafsson A. Routes to chaotic emission in a cw He-Ne laser[J]. Phys Rev A, 1983, 28(2): 892-895.

    [3] Gioggia R S, Abraham N B. Routes to chaotic output from a single-mode, dc-excited laser[J]. Phys Rev Lett, 1983, 51(8): 650-653.

    [4] Weiss C O,Klishe W, Ering P S, et al.. Instabilities and chaos of a single mode NH3 ring laser[J]. Opt Commun, 1985, 52(6): 405-408.

    [5] Mukai T, Otsuka K. New route to optical chaos: Successive-subharmonic-oscil-lation cascade in a semiconductor laser coupled to an external cavity[J]. Phys Rev Lett, 1985, 55(17): 1711-1714.

    [6] Ott E, Grebogi C, Yorke J. Controlling chaos[J]. Phys Rev Lett, 1990, 64(11): 1196-1199.

    [7] Percora L, Carroll T. Synchronization in chaotic systems[J]. Phys Rev Lett, 1990, 64(8): 821-824.

    [8] Wang A, Zhao T, Xu H, et al.. Range finding and fault locating with chaotic signal[C]. 2012 International Symposium on Nonlinear Theory and its Applications(NOLTA2012), 2012: 458-461.

    [9] Asmussen S, Glynn P. Stochastic Simulation: Algorithms and Analysis[M]. New York: Springer-Verlag Press, 2007.

    [10] Mrtropolis N, Ulam S. The Monte Carlo method[J]. Journal of the American Statistical Association, 1949, 44(247): 335-341.

    [11] Stinsin D. Cryptography: Theory and Practice[M]. CRC Press, 1995.

    [13] Uchida A, Amano K, Inoue M, et al.. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nature Photonics, 2008, 2(12): 728-732.

    [14] Hirano K, Yamazaki T, Morikatsu S, et al.. Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers[J]. Opt Express, 2010, 18(6): 5512-5524.

    [15] Zhang Y Y, Zhang J Z, Zhang M J, et al.. 2.87-Gb/s random bit generation based on bandwidth-enhanced chaotic laser [J]. Chin Opt Lett, 2011, 9(3): 031404.

    [16] Zhang J Z, Wang Y C, Liu M, et al.. A robust random number generator based on differential comparison of chaotic laser signals[J]. Opt Express, 2012, 20(7): 7496-7506.

    [17] Zhang J Z, Wang Y C, Xue L G, et al.. Delay line length selection in generating fast random numbers with a chaotic laser[J]. Appl Opt, 2012, 51(11): 1709-1714.

    [18] Wang A B, Li P, Zhang J G, et al.. 4.5 Gb/s high-speed real-time physical random bit generator[J]. Opt Express, 2013, 21(17): 20452-20462.

    [19] Reidler I, Aviad Y, Kanter I, et al.. Ultrahigh-speed random number generation based on a chaotic semiconductor laser[J]. Phys Rev Lett, 2009, 103(2): 024102.

    [20] Kanter I, Aviad Y, Reidler I, et al.. An optical ultrafast random bit generator[J]. Nature Photonics, 2010,4 (1): 58–61.

    [21] Argyris A, Deligiannidis S, Pikasis E, et al.. Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit[J]. Opt Express, 2010, 18(18): 18763-18768.

    [22] Oliver N, Soriano M C, Sukow D W, et al.. Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation[J]. Opt Lett, 2011, 36(23): 4632-4634.

    [23] Oliver N, Soriano M C, Sukow D W, et al.. Fast random bit generation using a chaotic laser: Approaching the information theoretic limit[J]. IEEE Journal of Quantum Electronics, 2013, 49(11): 910-918.

    [24] Tang Xi, Wu Jiagui, Xia Guangqiong, et al.. 17.5 Gbit/s random bit generation using chaotic output signal of mutually coupled semiconductor lasers[J]. Acta Physica Sinica, 2011, 60(11): 110509.

    [25] Wu J G, Tang X, Wu Z M, et al.. Parallel generation of 10 Gbits/s physical random number streams using chaotic semiconductor lasers[J]. Laser Phys, 2012, 22(10): 1476-1480.

    [26] Li X, Chan S. Random bit generation using an optically injected semiconductor laser in chaos with oversampling[J]. Opt Lett, 2012,37(11): 2163–2165.

    [27] Li X, Chan S. Heterodyne random bit generation using an optically injected semiconductor laser in chaos[J]. IEEE Journal of Quantum Electronics, 2013, 49(10): 829-838.

    [28] Akizawa Y, Yamazaki T, Uchida A, et al.. Fast random number generation with bandwidth-enhanced chaotic semiconductor lasers at 8×50 Gb/s[J]. IEEE Photonics Technology Letters, 2012, 24(12): 1042-1044.

    [29] Harayama T, Sunada S, Yoshimura K, et al.. Fast nondeterministic random-bit generation using on-chip chaos lasers[J]. Phys Rev A, 2011, 83(3): 031803.

    [30] Nguimdo R M, Verschaffelt G, Danckaert J, et al.. Fast random bits generation based on a single chaotic semiconductor ring laser[J]. Opt Express, 2012, 20(27): 28603-28613.

    [31] Li P, Wang Y C, Zhang J Z, et al.. All-optical fast random number generator[J]. Opt Express, 2010, 18(19): 20360-20369.

    [32] Li P, Wang Y C, Wang A B, et al.. Direct generation of all-optical random numbers from optical pulse amplitude chaos [J]. Opt Express, 2012, 20(4): 4297-4308.

    [33] Li P, Wang Y C, Wang A B, et al.. Fast and tunable all-optical physical random number generator based on direct quantization of chaotic self-pulsations in two-section semiconductor lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 0600208.

    [34] Liang Junqiang, Wang Juanfen, Li Pu, et al.. Optical sampling of chaotic laser based on four-wave mixing in highly nonlinear fiber[J]. Chinese J Lasers, 2013, 40(4): 0402009.

    [35] Qi B, Chi Y, Lo H K, et al.. High-speed quantum random number generation by measuring phase noise of a singlemode laser[J]. Opt Lett, 2010, 35(3): 312–314.

    [36] Guo H, Tang W, Liu Y, et al.. Truly random number generation based on measurement of phase noise of a laser[J]. Phys Rev E, 2010, 81(5): 051137.

    [37] Williams C, Salevan J, Li X, et al.. Fast physical random number generator using amplified spontaneous emission[J]. Opt Express, 2010, 18(23): 23584-23597.

    [38] Wei W, Xie G, Dang A, et al.. High-speed and bias-free optical random number generator[J]. IEEE Photonics Technology Letters, 2012, 24(6): 437-439.

    [39] Gabriel C, Wittmann C, Sych D, et al.. A generator for unique quantum random numbers based on vacuum states[J]. Nature Photonics, 2010, 4 (10): 711-715.

    [40] Shen Y, Tian L, Zou H. Practical quantum random number generator based on measuring the shot noise of vacuum states [J]. Phys Rev A, 2010, 81(6): 063814.

    [41] Mirasso C, Colet P, Gacia F P. Synchronization of chaotic semiconductor lasers: Application to encoded communications [J]. IEEE Photonics Technology Letters, 1996, 8(2): 299-301.

    [42] Van W, Roy R. Communication with chaotic lasers[J]. Science, 1998, 279(5354): 1198-1200.

    [43] Ohtsubo J. Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback[J]. IEEE Journal of Quantum Electronics, 2002, 38(9): 1141-1154.

    [44] Takiguchi Y, Ohyagi K, Ohtsubo J. Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback[J]. Opt Lett, 2003, 28(5): 319-321.

    [45] Heil T, Mulet J, Fischer I, et al.. ON/OFF phase shift keying for chaos-encrypted communication using externalcavity semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 2002, 38(9): 1162-1170.

    [46] Chen H F, Liu J M. Unidirectionally coupled synchronization of optically injected semiconductor lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 918-926.

    [47] Liu J M, Chen H F, Tang S. Synchronized chaotic optical communications at high bit rates[J]. IEEE Journal of Quantum Electronics, 2002, 38(9): 1184-1196.

    [48] Tang S, Liu J M. Message encoding-decoding at 2.5 Gbits/s through synchronization of chaotic pulsing semiconductor lasers[J]. Opt Lett, 2001, 26(23): 1843-1845.

    [49] Hong Y, Lee M W, Spencer R S, et al.. Synchronization of chaos in unidirectionally coupled vertical-cavity surfaceemitting semiconductor lasers[J]. Opt Lett, 2004, 29(11): 1215-1217.

    [50] Lee M W, J. Paul, Shore K A, et al.. Comparison of closed-loop and open-loop feedback schemes of message decoding using chaotic laser diodes[J]. Opt Lett, 2003, 28(22): 2168-2170.

    [51] Paul J, Lee M W, Shore K A. Effect of chaos pass filtering on message decoding quality using chaotic external-cavity laser diodes[J]. Opt Lett, 2004, 29(21): 2497-2499.

    [52] Murakami A, Shore K A. Chaos-pass filtering in injection-locked semiconductor lasers[J]. Phys Rev A, 2005, 72(8): 053810.

    [53] Hong Y, Lee M W, Paul J, et al.. Enhanced chaos synchronization in unidirectionally coupled vertical-cavity surfaceemitting semiconductor lasers with polarization-preserved injection[J]. Opt Lett, 2008, 33(6): 587-589.

    [54] Argyris A, Kanakidis D, Bogris A, et al.. Experimental evaluation of an open-loop all-optical chaotic communication system[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 927-935.

    [55] Kanakidis D, Argyris A, Syvridis D. Performance characterization of high-bit-rate optical chaotic communication systems in a back-to-back configuration[J]. IEEE Journal of Lightwave Technology, 2003, 21(3): 750-758.

    [56] Kanakidis D, Argyris A, Bogris A, et al.. Influence of the decoding process on the performance of chaos encrypted optical communication systems[J]. IEEE Journal of Lightwave Technology, 2006, 24(1): 335-341.

    [57] Bogris A, Chlouverakis K, Argyris A, et al.. Subcarrier modulation in-optical chaotic communication systems[J]. Opt Lett, 2007, 32(5): 2134-2136.

    [58] Argyris A, Bogris A, Hamacher M, et al.. Experimental evaluation of subcarrier modulation in chaotic optical communication systems[J]. Opt Lett, 2010, 35(2): 199-201.

    [59] Bogris A, Rizomiliotis P, Chlouverakis K, et al.. Feedback phase in optically generated chaos: a secret key for cryptographic applications[J]. IEEE Journal of Quantum Electronics, 2008, 44(2): 119-124.

    [60] Argyris A, Syvridis D. Perfomance of open-loop all-optical chaotic communication systems under strong injection condition[J]. IEEE Journal of Lightwave Technology, 2004, 22(5): 1272-1279.

    [61] Bogris A, Kanakidis D, Argyris A, et al.. Performance characterization of a closed-loop chaotic communication system including fiber transmission in dispersion shifted fibers[J]. IEEE Journal of Quantum Electronics, 2004, 40(9): 1326-1336.

    [62] Kanakidis D, Bogris A, Argyris A, et al.. Nmercial investigation of fiber transmission of a chaotic encrypted message using dispersion compensation schemes[J]. IEEE Journal of Lightwave Technology, 2004, 22(10): 2256-2263.

    [63] Argyris A, Syvridis D, Larger L, et al.. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 2005, 437(17): 343-346.

    [64] Bogris A, Argyris A, Syvridis D. Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits[J]. IEEE Journal of Quantum Electronics, 2010, 46(10): 1421-1429.

    [65] Argyris A, Hamacher M, Chlouverakis K, et al.. Photonic integrated device for chaos application in communications [J]. Phys Rev Lett, 2008,100(19): 194101.

    [66] Argyris A, Grivas E, Hamacher M, et al.. Chaos-on-a-chip secures data transmission in optical fiber links[J]. Opt Express, 2010, 18(5): 5188.

    [67] Bogris A, Argyris A, Syvridis D. Analysis of optical amplifier noise effect on electrooptically generated hyperchaos[J]. IEEE Journal of Quantum Electronics, 2007, 43(7): 552-559.

    [68] Argyris A, Grivas E, Bogris A, et al.. Transmission effects in wavelength division multiplexed chaotic optical communication systems[J]. IEEE Journal of Lightwave Technology, 2010, 28(21): 3107-3114.

    [69] Soriano M, Ruiz O F, Colet P, et al.. Synchronization properties of coupled semiconductor lasers subject to filtered optical feedback[J]. Phys Rev E, 2008, 78(4): 046218.

    [70] Vicente R, Perez T, Mirasso C. Open versus closed-loop performance of synchronization chaotic external-cavity semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 2002, 38(9): 1197-1204.

    [71] Ruiz O F, Soriano M, Colet P, et al.. Information encoding and decoding using unidirectionally coupled chaotic semiconductor lasers subject to filtered optical feedback[J]. IEEE Journal of Quantum Electronics, 2009, 45(8): 962-968.

    [72] Annovazzi L V, Bebedetti M, Merlo S, et al.. Message encryption by phase modulation of a chaotic optical carrier[J]. IEEE Photonics Technology Letters, 2007, 19(2): 76-78.

    [73] Annovazzi L V, Bebedetti M, Merlo S, et al.. Optical chaos masking of video signals[J]. IEEE Photonics Technology Letters, 2005, 17(9): 1995-1997.

    [74] Annovazzi L V, G Aromataris, Bebedetti M, et al.. Secure chaotic transmission on a free-space optical data link[J]. IEEE Journal of Quantum Electronics, 2008, 44(11): 1089-1095.

    [75] Annovazzi L V, G Aromataris, Bebedetti M, et al.. All-optical wavelength conversion of a chaos masked signal[J]. IEEE Photonics Technology Letters, 2007, 19(22): 1783-1785.

    [76] Xia G Q, Wu Z M, Wu J G. Theory and simulation of dual-channel optical chaotic communication system[J]. Opt Express, 2005, 13(9): 3445-3453.

    [77] Xia G Q, Wu Z M, Liao J F. Theoretical investigations of cascaded chaotic synchronization and communication based on optoelectronic negative feedback semiconductor lasers[J]. Opt Commun, 2009, 282(5): 1009-1015.

    [78] Wu J G, Wu Z M, Xia G Q, et al.. Isochronous synchronization between chaotic semiconductor lasers over 40-km fiber links[J]. IEEE Photonics Technology Letters, 2011, 23(24): 1854-1856.

    [79] Liu J, Wu Z M, Xia G Q. Dual-channel chaos synchronization and communication based on unidirectionally coupled VCSELs with polarization-rotated optical feedback and polarization-rotated optical injection[J]. Opt Express, 2009, 17(15): 12619-12626.

    [80] Deng T, Xia G Q, Cao L P, et al.. Bidirectional chaos synchronization and communication in semiconductor lasers with optoelectronic feedback[J]. Opt Commun, 2009, 282(11): 2243-2249.

    [81] Deng T, Xia G Q, Wu Z M, et al.. Chaos synchronization in mutually coupled semiconductor lasers with asymmetrical bias currents[J]. Opt Express, 2011,19(9): 8762-8773.

    [82] Li P, Wu J G, Wu Z M, et al.. Bidirectional chaos communication between two outer semiconductor lasers coupled mutually with a central semiconductor laser[J]. Opt Express, 2011, 19(24): 23921-23931.

    [83] Xiao Y, Deng T, Wu Z M, et al.. Chaos synchronization between arbitrary two response VCSELs in a broadband chaos network driven by a bandwidth-enhanced chaotic signal[J]. Opt Commun, 2012, 285(6): 1442-1448.

    [84] Wu J G, Wu Z M,Tang X, et al.. Experimental demonstration of LD based bidirectional fiber-optic chaos communication [J]. IEEE Photonics Technology Letters, 2013, 25(6): 587-590.

    [85] Wu J G, Wu Z M,Liu Y R,et al.. Simulation of bidirectional long-distance chaos communication performance in a novel fiber-optic chaos synchronization system[J]. IEEE Journal of Lightwave Technology, 2013, 31(3): 461-467.

    [86] Pan Xingmao, Wu Zhengmao, Tang Xi, et al.. Chaos synchronization and communication in mesh network based on mutually coupled semiconductor lasers[J]. Chinese J Lasers, 2013, 40(12): 1202005.

    [87] Li X F, Pan W, Luo B, et al.. Mismatch robustness and security of chaotic optical communications based on injectionlocking chaos synchronization[J]. IEEE Journal of Quantum Electronics, 2006, 42(9): 953-960.

    [88] Li X F, Pan W, Ma D, et al.. Chaos synchronization of unidirectionally injected VCSELs with global and modeselective coupling[J]. Opt Express, 2006, 14(8): 3138-3151.

    [89] Li X F, Pan W, Luo B, et al.. Chaos synchronization and communication of cascade-coupled semiconductor lasers[J]. IEEE Journal of Lightwave Technology, 2006, 24(12): 4936-4945.

    [90] Zhang W L, Pan W, Luo B, et al.. Chaos synchronization communication using extremely unsymmetrical bidirectional injections[J]. Opt Lett, 2008, 33(3): 237-239.

    [91] Zhang W L, Pan W, Luo B, et al.. One-to-many and many-to-one optical chaos communications using semiconductor lasers[J]. IEEE Photonics Technology Letters, 2008, 20(9): 712-714.

    [92] Jiang N, Pan W, Luo B, et al.. Properties of leader/laggard chaos synchronization in mutually coupled external-cavity semiconductor lasers[J]. Phys Rev E, 2010, 81(6): 066217.

    [93] Jiang N, Pan W, Yan L S, et al.. Two chaos synchronization schemes and public-channel message transmission in a mutually coupled semiconductor lasers system[J]. Opt Commun, 2009, 282(11): 2217-2222.

    [94] Jiang N, Pan W, Yan L S, et al.. Synchronization preservability of intermittent coupling chaotic semiconductor lasers [J]. J Opt Soc Am B, 2011, 28(5): 1062-1066.

    [95] Jiang N, Pan W, Yan L S, et al.. Isochronal chaos synchronization of semiconductor lasers with multiple time-delayed couplings[J]. J Opt Soc Am B, 2011, 28(5): 1139-1145.

    [96] Jiang N, Pan W, Luo B, et al.. Influences of injection current on the synchronization and communication performance of closed-loop chaotic semiconductor lasers[J]. Opt Lett, 2011, 36(16): 3197-3199.

    [97] Jiang N, Pan W, Yan L S, et al.. Chaos synchronization and communication in multiple time-delayed coupling semiconductor lasers driven by a third laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1220-1227.

    [98] Jiang N, Pan W, Yan L S, et al.. Multiaccess optical chaos communication using mutually coupled semiconductor lasers subjected to identical external injections[J]. IEEE Photonics Technology Letters, 2010, 22(10): 676-678.

    [99] Jiang N, Pan W, Luo B, et al.. Bidirectional dual-channel communication based on polarization-division-multiplexed chaos synchronization in mutually coupled VCSELs[J]. IEEE Photonics Technology Letters, 2012, 24(13): 1094-1096.

    [100] Zhao Q, Yin H. Performance analysis of dense wavelength division multiplexing secure communications with multiple chaotic optical channels[J]. Opt Commun, 2012, 2(5): 693-698.

    [101] Zhao Q, Yin H, Chen X. Long-haul dense wavelength division multiplexing between a chaotic optical secure channel and a conventional fiber-optic channel[J]. Appl Opt, 2012, 51(22): 5585-5590.

    [102] Zhao Q, Yin H. Performance analysis of orthogonal optical chaotic division multiplexing utilizing semiconductor lasers [J]. Optics & Laser Technology, 2012, 47: 208-213.

    [103] Zhao Q, Yin H, Li H. Five-user, 1.25-Gbits/s per user, all-optical orthogonal multiplexing communications using chaotic semiconductor lasers[J]. Optik, 2013,124(6): 487-490.

    [104] Yang L, Zhang X, Wang A, et al.. Experimental investigation of the chaos synchronization in DFB diode lasers with unsymmetrical scheme[J]. Chin Phys Lett, 2008, 25(11): 3883-3885.

    [105] Zhao Q, Wang Y, Wang A. Eavesdropping in chaotic optical communication using the feedback length of an externalcavity laser as a key[J]. Appl Opt, 2009, 48(18): 3515-3520.

    [106] Guo Dongming, Yang Lingzhen, Wang Anbang, et al.. Modulation of feedback strength to enhance the security of chaos optical communication system[J]. Acta Physica Sinica, 2009, 58(12): 8275-8280.

    [107] Zhang J, Wang A, Wang J, et al.. Wavelength division multiplexing of chaotic secure and fiber-optic communications [J]. Opt Express, 2009, 17(8): 6357-6367.

    [108] Yan S L. All-optical chaotic MQW laser repeater for long-haul chaotic communications[J]. Chin Opt Lett, 2005, 3(5): 283-286.

    [109] Yan Senlin. Theoretical studies on optical fiber secure communication using chaotic phase encoding [J]. Acta Physica Sinica, 2005, 54(5): 2000-2006.

    [110] Wang Shengqian, Yan Senlin. Theoretical study of cascade synchronization in chaotic lasers and chaotic repeater[J]. Acta Physica Sinica, 2006, 55(4): 1687-1695.

    [111] Uchida, Atsushi. Optical Communication with Chaotic Lasers: Applications of Nonlinear Dynamics and Synchronization [M]. Germany, Weinhrin: Wiley-VCH Verlag GmbH & Co. KGaA Press, 2012.

    [112] Nguimdo R, Lavrov R, Colet P, et al.. Effect of fiber dispersion on broadband chaos communications implemented by electro-optic nonlinear delay phase dynamics[J]. IEEE Journal of Lightwave Technology, 2010, 28(18): 2688-2696.

    [113] Lavrov R, Jacquot M, Larger L. Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications[J]. IEEE Journal of Quantum Electronics, 2010, 46(10): 1430-1435.

    [114] Klein E, Gross N, Kopelowitz E, et al.. Public-channel cryptography based on mutual chaos pass filters[J]. Phys Rev E, 2006, 74(4): 046201.

    [115] Vicente R, Mirasso C. Simultaneous bidirectional meesage transmission in a choas-based communication scheme[J]. Opt Lett, 2007, 32(4): 403-405.

    [116] Hu Hanping, Chen Xiaofeng, Su Wei, et al.. Multi-coupled chaos synchronization and communication based on optoelectronic feedback delay[J]. Acta Optica Sinica, 2014, 34(4): 0406006.

    [117] Paul J, Sivaprakasam S, Shore K A. Dual-channel chaotic optical communications using external-cavity semiconductor lasers[J]. J Opt Soc Am B, 2004, 21(3): 514-521.

    [118] Buldu J, Garcia O J, Torrent M. Demultiplexing chaos from multimode semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 2005, 41(2): 164-170.

    [119] Uchida A, Heil T, Liu Y, et al.. High-frequency broadband signal generation using a semiconductor laser with a chaotic optical injection[J]. IEEE Journal of Quantum Electronics, 2003, 39(11): 1462–1467.

    [120] Yan Senlin. Bandwidth enhancement of a chaotic semiconductor laser transmitter by cross-phase modulation[J]. Acta Physica Sinica, 2010, 59(6): 3810-3816.

    [121] Yan Senlin. Enhancement of chaotic carrier bandwidth in a semiconductor laser transmitter using self-phase modulation in an optical fiber external round cavity[J]. Chinese Science Bulletin, 2010, 55(6): 422–427.

    [122] Wang A, Yang Y, Wang B, et al.. Generation of wide chaos with suppressed time-delay signature by delayed selfinterference[J]. Opt Express, 2013, 21(7): 8701-8710.

    [123] Yan Senlin. Theoretical study on laser chaos attacking optical fiber communication systems[J]. Chinese Journal of Quantum Electronics, 2008, 25(6): 0754.

    [124] Vicente R, Claudio R, Fischer I. Simultaneous bidirectional message transmission in a chaos-based communication scheme[J]. Opt Lett, 2007, 32(4): 403-405.

    [125] Kanter I, Kopelow I. Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography[J]. Opt Express, 2010, 18(17): 18292-18302.

    [126] Yoshimura K, Muramatsu J, Davis P, et al.. Secure key distribution using correlated randomness in lasers driven by common random light[J]. Phys Rev Lett, 2012, 108(7): 070602.

    [127] Lin F, Liu J. Chaotic radar using nonlinear laser dynamics[J]. IEEE Journal of Quantum Electronics, 2004, 40(6): 815-820.

    [128] Wang B J, Wang Y C, Kong L Q, et al.. Multi-target real-time ranging with the chaotic laser ladar[J]. Chin Opt Lett, 2008, 6(11): 868-870.

    [129] Wang Bingjie, Qian Jianjun, Zhao Tong, et al.. Anti-jamming performance of chaotic lidar[J]. Chinese J Lasers, 2011, 38(5): 0514002.

    [130] Wang B J, Zhao T, Wang H K. Improvement of signal-to-noise ratio in chaotic laser radar based on algorithm implementation[J]. Chin Opt Lett, 2012, 10(5): 052801.

    [131] Wang Y, Wang B, Wang A. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 2008, 20(19): 1636-1638.

    [132] Zhang Li, Wang Anbang, Li Kai, et al.. Fiber fault visible chaotic optical time domain reflectometry measurement method[J]. Chinese J Lasers, 2013, 40(3): 0308007.

    [133] Wang A, Wang N, Yang Y, et al.. Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser[J]. IEEE Journal of Lightwave Technology, 2012, 30(21): 3420-3426.

    [134] Zhao T, Wang A, Wang Y, et al.. Fiber fault location utilizing traffic signal in optical network[J]. Opt Express, 2013, 21(20): 23978-23984.

    [135] Wang A, Zhang M, Xu H, et al.. Location of wire faults using chaotic signal[J]. IEEE Electron Device Letters, 2011, 32(3): 372-374.

    [136] Zhang M, Liu T, Wang A, et al.. Photonic ultra wideband signal generator using an optically injected chaotic semiconductor laser[J]. Opt Lett, 2011, 36(6): 1008-1010.

    [137] Peil M, Fischer I, Elser W. Rainbow refractometry with a tailored incoherent semiconductor laser source[J]. Appl Phys Lett, 2006, 89(9): 091106.

    [138] Wang Y, Kong L, Wang A, et al.. Coherent length tunable semiconductor laser by optical feedback[J]. Appl Opt, 2009, 48(5): 871-973.

    [139] Sinha S, Ditto W L. Dynamics based computation[J]. Phys Rev Lett, 1998, 81(10): 2156-2159.

    [140] Chlouverakis K E, Adams M J. Optoelectronic realization of NOR logic gate using chaotic two-section lasers[J]. Electronics Letters, 2005, 41(6): 359-360.

    [141] Yan Senlin. Optoelectronic or all-optical logic gates using chaotic semiconductor lasers using mutual couplingfeedback[J]. Acta Physica Sinica, 2011, 60(5): 050509.

    CLP Journals

    [1] Zhang Mingtao, Zhang Jianzhong, Zhang Jianguo, Xu Hang, Zhang Mingjiang, Wang Anbang, Wang Yuncai. Chaotic Modulation Lidar for Underwater Ranging[J]. Laser & Optoelectronics Progress, 2016, 53(5): 51402

    [2] Qiao Yi, Ma Jun, Zhang Jianguo. Design of Chaotic Light Source for Chaos Optical Time Domain Reflectometry[J]. Laser & Optoelectronics Progress, 2017, 54(2): 21201

    [3] Sun Jing, Zou Shuzhen, Chen Han, Yu Haijuan, Wang Xubao, Lin Xuechun. Recent Progress of High-Power Cladding Light Stripper[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110001

    Wu Yuan, Wang Bingjie, Wang Yuncai. Research Progress in Applications of Chaotic Laser[J]. Laser & Optoelectronics Progress, 2015, 52(6): 60005
    Download Citation