• Acta Optica Sinica
  • Vol. 26, Issue 10, 1549 (2006)
[in Chinese]* and [in Chinese]
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article Set citation alerts
    [in Chinese], [in Chinese]. Condition of Gap Soliton in Fiber Bragg Grating[J]. Acta Optica Sinica, 2006, 26(10): 1549 Copy Citation Text show less
    References

    [1] M. C. Farries, C. M. Ragdale, D. C. J. Reid. Broadband chirped fibre Bragg filters for pump rejection and recycling in erbium doped fibre amplifiers[J]. Electron. Lett., 1992, 28(5): 487~489

    [2] R. Zengerle, O. Leminger. Phaseshifted Bragggrating filters with improved transmission characteristics[J]. J. Lightwave Technol., 1995, 13(12): 2354~2358

    [3] P. Petruzzi, C. Lowry, P. Sivanesan. Dispersion compensation using only fiber Bragg gratings[J]. IEEE J. Selected Topics in Quant. Electron., 1999, 5(5): 1339~1344

    [4] G. Lenz, B. J. Eggleton, N. Litchinitser. A pulse compressor based on selfphase modulation in a fiber Bragg grating[C]. Lasers and ElectroOptics, CLEO 98. Technical Digest. Summaries of Papers Presented at the Conference on,3~8 May, 1998. 165

    [5] Raymond M. Measures. Structural Monitoring with Fiber Optic Technology[M]. San Diego, California: Academic Press, 2001. 526~642

    [6] Y. J. Rao, M. R. Cooper, D. A. Jackson et al.. Absolute strain measurement using an infibreBragggratingbased FabryPérot sensor[J]. Electron. Lett., 2000, 36(8): 708~709

    [7] Y. J. Rao, K. Kalli, G. Brady et al.. Spatiallymultiplexed fibreoptic Bragg grating strain and temperature sensor system based on interferometric wavelengthshift detection[J]. Electron. Lett., 1995, 31(12): 1009~1010

    [8] Y. J. Rao, D. J. Webb, D. A. Jackson et al.. Highresolution, wavelengthdivisionmultiplexed infibre Bragg grating sensor system[J]. Electron. Lett., 1996, 32(10): 924~926

    [9] T. A. Berkoff, A. D. Kersey. Fiber Bragg grating array sensor system using a bandpass wavelength division multiplexer and interferometric detection[J]. IEEE Photon. Technol. Lett., 1996, 8(11): 1522~1524

    [10] G. lenz, B. J. Eggleton. Adiabatic Bragg soliton conpression in nonuniform grating structures[J]. J. Opt. Soc. Am. B, 1998, 15(12): 2979~2985

    [11] B. J. Eggleton, R. E. Slusher, C. M. de Sterke et al.. Bragg grating soliton[J]. Phys. Rew. Lett., 1996, 76(10): 1627~1630

    [12] D. Taver, N. G. R. Broderick, D. J. Richardson et al.. Nonlinear selfswitching and multiple gapsoliton formation in a fiber Bragg grating[J]. Opt. Lett., 1998, 23(5): 328~330

    [13] D. N. Christodoulides, R. I. Joseph. Slow Bragg solitons in nonlinear periodic structures[J]. Phys. Rew. Lett., 1989, 62(15): 1746~1749

    [14] A. B. Aceves, S. Wabnitz. Selfinduced transparency solitons in nonlinear refractive periodic media[J]. Phys. Lett. A, 1989, 141(1,2): 37~42

    [15] C. M. de Sterke, J. E. Sipe. Envelopefunction approach for the electrodynamics of nonlinear periodic structures[J]. Phys. Lett. A, 1988, 38(10): 5149~5165

    [16] C. M. de Sterke, J. E. Sipe. “Gap solitons”, in Progress in Optics ⅩⅩⅩⅠⅠⅠ, E. Wolf, ed, Chap. Ⅲ. 203~260, Elsevier, Amsterdam,1994

    [17] E. N. Tsoy, C. M. de Sterke. Propagation of nonlinear pules in chirped fiber gratings[J]. Phys. Rev. E, 2000, 62(2): 2882~2890

    [18] E. N. Tsoy, C. M. de Sterke. Soliton dynamics in nonuniform fiber Bragg gratings[J]. Opt. Soc. Am. B, 2001, 18(1): 1~6

    [19] A. I. Maimistov. Evolution of solitary waves which are approximately solitons of a nonlinear Schrdinger equation[J]. Sov. Phys. JETP, 1993, 77(5): 727~731

    [20] D. Anderson. High transmission rate communication systems using lossy optical fibers[J]. Opt. Commun., 1983, 48(2): 107~113