• Chinese Journal of Lasers
  • Vol. 48, Issue 18, 1802009 (2021)
Yuchao Bian1, Yingbo Peng1, Lingfeng Song1, Hongwei Tang1, Guanglu Cai1, Gaoyan Zhong1、2、*, and Shoufeng Yang1、3
Author Affiliations
  • 1College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu 210031, China
  • 2State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China;
  • 3University of Southampton, Southampton SO17 IBJ, UK
  • show less
    DOI: 10.3788/CJL202148.1802009 Cite this Article Set citation alerts
    Yuchao Bian, Yingbo Peng, Lingfeng Song, Hongwei Tang, Guanglu Cai, Gaoyan Zhong, Shoufeng Yang. Heterogeneity of 316L/IN718 Formed via Selective Laser Melting Based on Laser Remelting Optimization Process[J]. Chinese Journal of Lasers, 2021, 48(18): 1802009 Copy Citation Text show less
    References

    [1] Jiang H Y, Lin W K, Wu S B et al. Application status and development trend of laser selective melting technology[J]. Mechanical Engineering & Automation, 223-226(2019).

    [2] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [3] Chen K Y, Wang C, Hong Q F et al. Selective laser melting 316L/CuSn10 multi-materials: processing optimization, interfacial characterization and mechanical property[J]. Journal of Materials Processing Technology, 283, 116701(2020).

    [4] Mei X L, Wang X Y, Peng Y B et al. Interfacial characterization and mechanical properties of 316L stainless steel/Inconel 718 manufactured by selective laser melting[J]. Materials Science and Engineering A, 758, 185-191(2019).

    [5] Yao Y S, Wang J, Chen Q B et al. Research status of defects and defect treatment technology for laser additive manufactured products[J]. Laser & Optoelectronics Progress, 56, 100004(2019).

    [6] Kasperovich G, Haubrich J, Gussone J et al. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting[J]. Materials & Design, 105, 160-170(2016).

    [7] Xiong W, Hao L, Li Y et al. Effect of selective laser melting parameters on morphology, microstructure, densification and mechanical properties of supersaturated silver alloy[J]. Materials & Design, 170, 107697(2019).

    [8] Liu H W, Zheng C, Chen S M. Effects of heat treatment on microstructure and mechanical properties of laser selective melting AlSi10Mg alloy[J]. Special Casting & Nonferrous Alloys, 40, 523-525(2020).

    [9] Yang T, Liu T T, Liao W H et al. The influence of process parameters on vertical surface roughness of the AlSi10Mg parts fabricated by selective laser melting[J]. Journal of Materials Processing Technology, 266, 26-36(2019).

    [10] Yasa E, Kruth J. Application of laser re-melting on selective laser melting parts[J]. Advances in Production Engineering & Management, 6, 259-270(2011).

    [11] Lu P, Zhang C L, Liang H Y et al. A new two-step selective laser remelting of 316L stainless steel: process, density, surface roughness, mechanical properties, microstructure[J]. Materials Research Express, 7, 056503(2020).

    [12] Yu W H, Sing S L, Chua C K et al. Influence of re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 792, 574-581(2019).

    [13] Yasa E, Kruth J P. Investigation of laser and process parameters for selective laser erosion[J]. Precision Engineering, 34, 101-112(2010).

    [14] Alrbaey K, Wimpenny D, Tosi R et al. On optimization of surface roughness of selective laser melted stainless steel parts: a statistical study[J]. Journal of Materials Engineering and Performance, 23, 2139-2148(2014).

    [15] Wang J G, Gao S Y, Chen X S et al. Mechanical properties of A356 aluminum alloy after laser surface remelting[J]. Chinese Journal of Lasers, 47, 0402002(2020).

    [16] Shi W T, Wang P, Liu Y D et al. Experimental study on surface quality and process of selective laser melting forming 316L[J]. Surface Technology, 48, 257-267(2019).

    [17] Huang W D, Zhang W J, Lian G F et al. Effect of SLM forming process parameters on surface roughness of 316L stainless steel parts[J]. Applied Laser, 40, 35-41(2020).

    [18] Khairallah S A, Anderson A T, Rubenchik A et al. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia, 108, 36-45(2016).

    [19] Qiu C L, Wang Z, Aladawi A S et al. Influence of laser processing strategy and remelting on surface structure and porosity development during selective laser melting of a metallic material[J]. Metallurgical and Materials Transactions A, 50, 4423-4434(2019).

    [20] Mohd Y S, Zhao X, Yang S F et al. Interfacial characterisation of multi-material 316L stainless steel/Inconel 718 fabricated by laser powder bed fusion[J]. Materials Letters, 284, 128928(2021).

    [21] Chen J, Yang Y Q, Song C H et al. Interfacial microstructure and mechanical properties of 316L/CuSn10 multi-material bimetallic structure fabricated by selective laser melting[J]. Materials Science and Engineering A, 752, 75-85(2019).

    [22] Zhang R Q, Fan L, Zhou B G et al. Microstructure and properties of selective laser melted 316L stainless steel in different directions[J]. Heat Treatment of Metals, 45, 161-166(2020).

    [23] Deng D Y, Peng R L, Brodin H et al. Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: sample orientation dependence and effects of post heat treatments[J]. Materials Science and Engineering A, 713, 294-306(2018).

    Yuchao Bian, Yingbo Peng, Lingfeng Song, Hongwei Tang, Guanglu Cai, Gaoyan Zhong, Shoufeng Yang. Heterogeneity of 316L/IN718 Formed via Selective Laser Melting Based on Laser Remelting Optimization Process[J]. Chinese Journal of Lasers, 2021, 48(18): 1802009
    Download Citation