• Chinese Journal of Lasers
  • Vol. 48, Issue 18, 1802009 (2021)
Yuchao Bian1, Yingbo Peng1, Lingfeng Song1, Hongwei Tang1, Guanglu Cai1, Gaoyan Zhong1、2、*, and Shoufeng Yang1、3
Author Affiliations
  • 1College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu 210031, China
  • 2State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China;
  • 3University of Southampton, Southampton SO17 IBJ, UK
  • show less
    DOI: 10.3788/CJL202148.1802009 Cite this Article Set citation alerts
    Yuchao Bian, Yingbo Peng, Lingfeng Song, Hongwei Tang, Guanglu Cai, Gaoyan Zhong, Shoufeng Yang. Heterogeneity of 316L/IN718 Formed via Selective Laser Melting Based on Laser Remelting Optimization Process[J]. Chinese Journal of Lasers, 2021, 48(18): 1802009 Copy Citation Text show less
    SEM morphologies of two powders. (a) 316L; (b) IN718
    Fig. 1. SEM morphologies of two powders. (a) 316L; (b) IN718
    Forming schematics of two kinds of 316L/IN718 heterogeneous formed parts. (a) Different-layer; (b) same-layer
    Fig. 2. Forming schematics of two kinds of 316L/IN718 heterogeneous formed parts. (a) Different-layer; (b) same-layer
    Two different scanning strategies. (a) Island scanning; (b) group scanning
    Fig. 3. Two different scanning strategies. (a) Island scanning; (b) group scanning
    Physical images of 316L/IN718 same-layer heterogeneous parts. (a) Formed parts; (b) tensile specimen
    Fig. 4. Physical images of 316L/IN718 same-layer heterogeneous parts. (a) Formed parts; (b) tensile specimen
    Influences of laser remelting process parameters on top surface roughness of 316L. (a) Influence of laser power; (b) influence of scanning speed; (c) influence of remelting times
    Fig. 5. Influences of laser remelting process parameters on top surface roughness of 316L. (a) Influence of laser power; (b) influence of scanning speed; (c) influence of remelting times
    Morphologies of top surface at different laser remelting process parameters. Laser power: (a) 240 W, (b) 300 W, (c) 320 W; scanning speed; (d) 250 mm/s, (e) 450 mm/s, (f) 650 mm/s; remelting times: (g) 0, (h) 1, (i) 5
    Fig. 6. Morphologies of top surface at different laser remelting process parameters. Laser power: (a) 240 W, (b) 300 W, (c) 320 W; scanning speed; (d) 250 mm/s, (e) 450 mm/s, (f) 650 mm/s; remelting times: (g) 0, (h) 1, (i) 5
    Morphologies of different-layer 316L/IN718 interface. (a) Un-remelting; (b) remelting
    Fig. 7. Morphologies of different-layer 316L/IN718 interface. (a) Un-remelting; (b) remelting
    Morphologies of same-layer 316L/IN718 interface. (a) Un-remelting; (b) remelting
    Fig. 8. Morphologies of same-layer 316L/IN718 interface. (a) Un-remelting; (b) remelting
    Changes of element content at same-layer 316L/IN718 interface. (a) Un-remelting; (b) remelting
    Fig. 9. Changes of element content at same-layer 316L/IN718 interface. (a) Un-remelting; (b) remelting
    Element distribution at same-layer 316L/IN718 interface. (a) Un-remelted interface; (b)--(c) elementsdistribution at un-remelted interface; (d) remelted interface; (e)--(f) elements distribution at remelted interface
    Fig. 10. Element distribution at same-layer 316L/IN718 interface. (a) Un-remelted interface; (b)--(c) elementsdistribution at un-remelted interface; (d) remelted interface; (e)--(f) elements distribution at remelted interface
    Tensile test results of 316L/IN718 same-layer heterogeneous samples before and after remelting optimization.(a) Stress-strain curves; (b) mechanical properties
    Fig. 11. Tensile test results of 316L/IN718 same-layer heterogeneous samples before and after remelting optimization.(a) Stress-strain curves; (b) mechanical properties
    Fracture morphologies of same-layer 316L/IN718 tensile samples. (a) Un-remelting; (b) remelting; (c) area A of IN718; (d) area B of interface; (e) area C of 316L
    Fig. 12. Fracture morphologies of same-layer 316L/IN718 tensile samples. (a) Un-remelting; (b) remelting; (c) area A of IN718; (d) area B of interface; (e) area C of 316L
    MaterialMass fraction /%
    FeNiCrNbMoTiMnCuSi
    316L66.0612.1617.06--2.59--1.580.150.82
    IN71819.9251.1719.754.972.920.77<0.01<0.1--
    Table 1. Main constituent elements of 316L and IN718 powders
    MaterialRepose angle /(°)Apparent density /(g·cm-3)Tap density /(g·cm-3)
    316L25.34.2404.957
    IN71826.24.3085.088
    Table 2. Fluidity test of two powder materials
    Parameter316 LIN718
    Laser power /W300400
    Scanning speed /(mm·s-1)8501000
    Layer thickness /mm0.050.05
    Scanning space /mm0.070.07
    Table 3. Process parameters of two powders
    FactorLevel
    Laser power /W240260280300320--
    Scanning speed /(mm·s-1)250350450550650--
    Remelting times012345
    Table 4. Process parameters of laser remelting experiment on 316L formed parts top surface
    ItemE316L/(J·mm-3)Einterface/(J·mm-3)EIN718/(J·mm-3)η /%
    Un-remelting100.84--114.2872
    1st remelting100.84108.57114.2872
    2nd remelting100.84108.57114.2876
    Table 5. Laser remelting process parameters of 316L/IN718 same-layer heterogeneous formed parts
    Yuchao Bian, Yingbo Peng, Lingfeng Song, Hongwei Tang, Guanglu Cai, Gaoyan Zhong, Shoufeng Yang. Heterogeneity of 316L/IN718 Formed via Selective Laser Melting Based on Laser Remelting Optimization Process[J]. Chinese Journal of Lasers, 2021, 48(18): 1802009
    Download Citation