• Infrared and Laser Engineering
  • Vol. 50, Issue 11, 20210084 (2021)
Yuheng Wang, Honghu Ji, Wen Cheng, and Jiquan Li
Author Affiliations
  • College of Energy and Power, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • show less
    DOI: 10.3788/IRLA20210084 Cite this Article
    Yuheng Wang, Honghu Ji, Wen Cheng, Jiquan Li. Influence of design of convergent-divergent nozzle on aerodynamic and infrared characteristics of serpentine 2-D exhaust system[J]. Infrared and Laser Engineering, 2021, 50(11): 20210084 Copy Citation Text show less
    Geometric model of the reference axisymmetric exhaust system
    Fig. 1. Geometric model of the reference axisymmetric exhaust system
    Geometrical parameters of serpentine 2-D convergent-divergent nozzle
    Fig. 2. Geometrical parameters of serpentine 2-D convergent-divergent nozzle
    Side and top views of three serpentine 2-D convergent-divergent exhaust system
    Fig. 3. Side and top views of three serpentine 2-D convergent-divergent exhaust system
    Serpentine 2-D convergent-divergent exhaust system with afterbody
    Fig. 4. Serpentine 2-D convergent-divergent exhaust system with afterbody
    Computational domain and boundary conditions
    Fig. 5. Computational domain and boundary conditions
    Grid of flow field and wall in serpentine 2-D convergent-divergent exhaust system
    Fig. 6. Grid of flow field and wall in serpentine 2-D convergent-divergent exhaust system
    Sketch map of detection planes
    Fig. 7. Sketch map of detection planes
    Contrast of streamline distribution on symmetry plane of nozzle expansion section
    Fig. 8. Contrast of streamline distribution on symmetry plane of nozzle expansion section
    Comparison of dimensionless wall temperature distribution
    Fig. 9. Comparison of dimensionless wall temperature distribution
    Comparison of constant temperature line in symmetric plane of serpentine 2-D convergent-divergent exhaust system
    Fig. 10. Comparison of constant temperature line in symmetric plane of serpentine 2-D convergent-divergent exhaust system
    Comparison of entrainment ratio
    Fig. 11. Comparison of entrainment ratio
    CO2component concentration distribution on the symmetry plane
    Fig. 12. CO2component concentration distribution on the symmetry plane
    Comparison of integral infrared radiation intensity on side detection plane
    Fig. 13. Comparison of integral infrared radiation intensity on side detection plane
    Comparison of integral infrared radiation intensity on upper and lower detection plane
    Fig. 14. Comparison of integral infrared radiation intensity on upper and lower detection plane
    ParameterModel A1Model A2Model A3
    LD/D0.641
    LC/D0.9
    L/D1.64
    S8/ D0.286
    A8/A6B0.3
    A9/A6B0.37
    (S8-S9)/D0.300.260.26
    Table 1. Design parameters of serpentine 2-D convergent-divergent nozzle
    Pt/PaTt/ K WCO2WH2OWCO
    Core3.148500.0660.0250.000 1
    Bypass3.10350---
    Flow field1244.8---
    Table 2. Boundary conditions
    ItemAxisA1A2A3
    Cd0.9220.9170.9350.920
    Cf0.9750.9390.9420.926
    Table 3. Cd and Cf of three serpentine 2-D convergent-divergent exhaust system
    ParameterSensitivity λ
    SideUpperLower
    S8-S9)/D1.610.813.64
    W9-W8)/D−0.07−0.05−0.03
    Table 4. Sensitivity analysis of average integral infrared radiation intensity
    Yuheng Wang, Honghu Ji, Wen Cheng, Jiquan Li. Influence of design of convergent-divergent nozzle on aerodynamic and infrared characteristics of serpentine 2-D exhaust system[J]. Infrared and Laser Engineering, 2021, 50(11): 20210084
    Download Citation