• Photonics Research
  • Vol. 8, Issue 2, 103 (2020)
Houkai Chen1、†, Yuquan Zhang1、†, Yanmeng Dai1、†, Changjun Min1、3、*, Siwei Zhu2, and Xiaocong Yuan1、4、*
Author Affiliations
  • 1Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
  • 2Tianjin Union Medical Center, Tianjin 300121, China
  • 3e-mail: cjmin@szu.edu.cn
  • 4e-mail: xcyuan@szu.edu.cn
  • show less
    DOI: 10.1364/PRJ.8.000103 Cite this Article Set citation alerts
    Houkai Chen, Yuquan Zhang, Yanmeng Dai, Changjun Min, Siwei Zhu, Xiaocong Yuan. Facilitated tip-enhanced Raman scattering by focused gap-plasmon hybridization[J]. Photonics Research, 2020, 8(2): 103 Copy Citation Text show less
    References

    [1] A. G. Milekhin, M. Rahaman, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, D. R. T. Zahn. Giant gap-plasmon tip-enhanced Raman scattering of MoS2 monolayers on Au nanocluster arrays. Nanoscale, 10, 2755-2763(2018).

    [2] A. Bhattarai, A. G. Joly, W. P. Hess, P. Z. El-Khoury. Visualizing electric fields at Au(111) step edges via tip-enhanced Raman scattering. Nano Lett., 17, 7131-7137(2017).

    [3] A. Bhattarai, K. T. Crampton, A. G. Joly, L. Kovarik, W. P. Hess, P. Z. El-Khoury. Imaging the optical fields of functionalized silver nanowires through molecular TERS. J. Phys. Chem. Lett., 9, 7105-7109(2018).

    [4] A. Bhattarai, P. Z. El-Khoury. Imaging localized electric fields with nanometer precision through tip-enhanced Raman scattering. Chem. Commun., 53, 7310-7313(2017).

    [5] M. Rahaman, R. D. Rodriguez, G. Plechinger, S. Moras, C. Schüller, T. Korn, D. R. T. Zahn. Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced Raman spectroscopy. Nano Lett., 17, 6027-6033(2017).

    [6] L. Meng, M. Sun. Tip-enhanced photoluminescence spectroscopy of monolayer MoS2. Photon. Res., 5, 745-749(2017).

    [7] W. Su, N. Kumar, A. Krayev, M. Chaigneau. In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale. Nat. Commun., 9, 2891(2018).

    [8] L. Dai, L. Song, Y. Huang, L. Zhang, X. Lu, J. Zhang, T. Chen. Bimetallic Au/Ag core-shell superstructures with tunable surface plasmon resonance in NIR and high performance SERS. Langmuir, 33, 5378-5384(2017).

    [9] D. Roy, C. Williams. High resolution Raman imaging of single wall carbon nanotubes using electrochemically etched gold tips and a radially polarized annular beam. J. Vac. Sci. Technol. A, 28, 472-475(2010).

    [10] Y. Zhang, R. Zhang, S. Jiang, Y. Zhang, Z.-C. Dong. Probing the adsorption configurations of small molecules on surfaces by single-molecule tip-enhanced Raman spectroscopy. Chem. Phys. Chem., 20, 37-41(2019).

    [11] M. Wiesner, R. H. Roberts, J.-F. Lin, D. Akinwande, T. Hesjedal, L. B. Duffy, S. Wang, Y. Song, J. Jenczyk, S. Jurga, B. Mroz. The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3. Sci. Rep., 9, 6147(2019).

    [12] R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, J. G. Hou. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 498, 82-86(2013).

    [13] J. Lee, K. T. Crampton, N. Tallarida, V. A. Apkarian. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature, 568, 78-82(2019).

    [14] S. Mahapatra, Y. Ning, J. F. Schultz, L. Li, J.-L. Zhang, N. Jiang. Angstrom scale chemical analysis of metal supported trans- and cis-regioisomers by ultrahigh vacuum tip-enhanced Raman mapping. Nano Lett., 19, 3267-3272(2019).

    [15] X. M. Lin, T. Deckertgaudig, P. Singh, M. Siegmann, S. Kupfer, Z. Zhang, S. Gräfe, V. Deckert. Direct base-to-base transitions in ssDNA revealed by tip-enhanced Raman scattering(2016).

    [16] M. Liu, W. Zhang, F. Lu, T. Xue, X. Li, L. Zhang, D. Mao, L. Huang, F. Gao, T. Mei, J. Zhao. Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy. Photon. Res., 7, 526-531(2019).

    [17] J. Yu, Y. Saito, T. Ichimura, S. Kawata, P. Verma. Far-field free tapping-mode tip-enhanced Raman microscopy. Appl. Phys. Lett., 102, 123110(2013).

    [18] H. Sebastian, C. Nick, V. Aravind. Probing hotspots of plasmon-enhanced Raman scattering by nanomanipulation of carbon nanotubes. Nanotechnology, 29, 465710(2018).

    [19] E. Poliani, M. R. Wagner, A. Vierck, F. Herziger, C. Nenstiel, F. Gannott, M. Schweiger, S. Fritze, A. Dadgar, J. Zaumseil, A. Krost, A. Hoffmann, J. Maultzsch. Breakdown of far-field Raman selection rules by light-plasmon coupling demonstrated by tip-enhanced Raman scattering. J. Phys. Chem. Lett., 8, 5462-5471(2017).

    [20] L. Xiao, K. A. Bailey, H. Wang, Z. D. Schultz. Probing membrane receptor–ligand specificity with surface- and tip-enhanced Raman scattering. Anal. Chem., 89, 9091-9099(2017).

    [21] J. L. Toca-Herrera. Atomic force microscopy meets biophysics, bioengineering, chemistry and materials science. ChemSusChem, 12, 603-611(2018).

    [22] X. Ma, Y. Zhu, N. Yu, S. Kim, Q. Liu, L. Apontti, D. Xu, R. Yan, M. Liu. Toward high-contrast AFM-TERS imaging: nano-antenna-mediated remote-excitation on sharp-tip silver nanowire probes. Nano Lett., 19, 100-107(2018).

    [23] L. Meng, T. Huang, X. Wang, S. Chen, Z. Yang, B. Ren. Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration. Opt. Express, 23, 13804-13813(2015).

    [24] N. Kazemi-Zanjani, S. Vedraine, F. Lagugné-Labarthet. Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light. Opt. Express, 21, 25271-25276(2013).

    [25] M. Rahaman, A. G. Milekhin, A. Mukherjee, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, D. R. T. Zahn. The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering. Faraday Discuss., 214, 309-323(2019).

    [26] M. Zhang, J. Wang, Q. Tian. Tip-enhanced Raman spectroscopy based on plasmonic lens excitation and experimental detection. Opt. Express, 21, 9414-9421(2013).

    [27] H. Kano, S. Mizuguchi, S. Kawata. Excitation of surface-plasmon polaritons by a focused laser beam. J. Opt. Soc. Am. B, 15, 1381-1386(1998).

    [28] C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, X. Yuan. Focused plasmonic trapping of metallic particles. Nat. Commun., 4, 2891(2013).

    [29] I. Gryczynski, J. Malicka, Z. Gryczynski, J. R. Lakowicz. Surface plasmon-coupled emission with gold films. J. Phys. Chem. B, 108, 12568-12574(2004).

    [30] Y. Zhang, L. Cao, H. Chen, Y. Dai, Z. Man, G. Li, C. Min, H. P. Urbach, X. Yuan. Enhancement effect of Au claddings in tip enhanced Raman spectroscopy. Optik, 199, 163326(2019).

    [31] M. Moskovits. Surface-enhanced spectroscopy. Rev. Mod. Phys., 57, 783-826(1985).

    [32] C. Zhang, B.-Q. Chen, Z.-Y. Li. Optical origin of subnanometer resolution in tip-enhanced Raman mapping. J. Phys. Chem. C, 119, 11858-11871(2015).

    [33] P. Liu, X. Chen, H. Ye, L. Jensen. Resolving molecular structures with high-resolution tip-enhanced Raman scattering images. ACS Nano, 13, 9342-9351(2019).

    [34] Y. Fujita, P. Walke, S. De Feyter, H. Uji-i. Tip-enhanced Raman scattering microscopy: recent advance in tip production. Jpn. J. Appl. Phys., 55, 08NA02(2016).

    [35] X. Wang, Y. Zhang, Y. Dai, C. Min, X. Yuan. Enhancing plasmonic trapping with a perfect radially polarized beam. Photon. Res., 6, 847-852(2018).

    [36] C. Zhang, C. Min, L. Du, X.-C. Yuan. Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging. Appl. Phys. Lett., 108, 201601(2016).

    CLP Journals

    [1] Chuangye Zhang, Changjun Min, Yuquan Zhang, Yanan Fu, Ling Li, Yulong Wang, Xiaocong Yuan. Detection of cylindrical vector beams with chiral plasmonic lens[J]. Chinese Optics Letters, 2022, 20(2): 023602

    Houkai Chen, Yuquan Zhang, Yanmeng Dai, Changjun Min, Siwei Zhu, Xiaocong Yuan. Facilitated tip-enhanced Raman scattering by focused gap-plasmon hybridization[J]. Photonics Research, 2020, 8(2): 103
    Download Citation