• Photonics Research
  • Vol. 8, Issue 2, 103 (2020)
Houkai Chen1,†, Yuquan Zhang1,†, Yanmeng Dai1,†, Changjun Min1,3,*..., Siwei Zhu2 and Xiaocong Yuan1,4,*|Show fewer author(s)
Author Affiliations
  • 1Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
  • 2Tianjin Union Medical Center, Tianjin 300121, China
  • 3e-mail: cjmin@szu.edu.cn
  • 4e-mail: xcyuan@szu.edu.cn
  • show less
    DOI: 10.1364/PRJ.8.000103 Cite this Article Set citation alerts
    Houkai Chen, Yuquan Zhang, Yanmeng Dai, Changjun Min, Siwei Zhu, Xiaocong Yuan, "Facilitated tip-enhanced Raman scattering by focused gap-plasmon hybridization," Photonics Res. 8, 103 (2020) Copy Citation Text show less
    References

    [1] A. G. Milekhin, M. Rahaman, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, D. R. T. Zahn. Giant gap-plasmon tip-enhanced Raman scattering of MoS2 monolayers on Au nanocluster arrays. Nanoscale, 10, 2755-2763(2018).

    [2] A. Bhattarai, A. G. Joly, W. P. Hess, P. Z. El-Khoury. Visualizing electric fields at Au(111) step edges via tip-enhanced Raman scattering. Nano Lett., 17, 7131-7137(2017).

    [3] A. Bhattarai, K. T. Crampton, A. G. Joly, L. Kovarik, W. P. Hess, P. Z. El-Khoury. Imaging the optical fields of functionalized silver nanowires through molecular TERS. J. Phys. Chem. Lett., 9, 7105-7109(2018).

    [4] A. Bhattarai, P. Z. El-Khoury. Imaging localized electric fields with nanometer precision through tip-enhanced Raman scattering. Chem. Commun., 53, 7310-7313(2017).

    [5] M. Rahaman, R. D. Rodriguez, G. Plechinger, S. Moras, C. Schüller, T. Korn, D. R. T. Zahn. Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced Raman spectroscopy. Nano Lett., 17, 6027-6033(2017).

    [6] L. Meng, M. Sun. Tip-enhanced photoluminescence spectroscopy of monolayer MoS2. Photon. Res., 5, 745-749(2017).

    [7] W. Su, N. Kumar, A. Krayev, M. Chaigneau. In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale. Nat. Commun., 9, 2891(2018).

    [8] L. Dai, L. Song, Y. Huang, L. Zhang, X. Lu, J. Zhang, T. Chen. Bimetallic Au/Ag core-shell superstructures with tunable surface plasmon resonance in NIR and high performance SERS. Langmuir, 33, 5378-5384(2017).

    [9] D. Roy, C. Williams. High resolution Raman imaging of single wall carbon nanotubes using electrochemically etched gold tips and a radially polarized annular beam. J. Vac. Sci. Technol. A, 28, 472-475(2010).

    [10] Y. Zhang, R. Zhang, S. Jiang, Y. Zhang, Z.-C. Dong. Probing the adsorption configurations of small molecules on surfaces by single-molecule tip-enhanced Raman spectroscopy. Chem. Phys. Chem., 20, 37-41(2019).

    [11] M. Wiesner, R. H. Roberts, J.-F. Lin, D. Akinwande, T. Hesjedal, L. B. Duffy, S. Wang, Y. Song, J. Jenczyk, S. Jurga, B. Mroz. The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3. Sci. Rep., 9, 6147(2019).

    [12] R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, J. G. Hou. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 498, 82-86(2013).

    [13] J. Lee, K. T. Crampton, N. Tallarida, V. A. Apkarian. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature, 568, 78-82(2019).

    [14] S. Mahapatra, Y. Ning, J. F. Schultz, L. Li, J.-L. Zhang, N. Jiang. Angstrom scale chemical analysis of metal supported trans- and cis-regioisomers by ultrahigh vacuum tip-enhanced Raman mapping. Nano Lett., 19, 3267-3272(2019).

    [15] X. M. Lin, T. Deckertgaudig, P. Singh, M. Siegmann, S. Kupfer, Z. Zhang, S. Gräfe, V. Deckert. Direct base-to-base transitions in ssDNA revealed by tip-enhanced Raman scattering(2016).

    [16] M. Liu, W. Zhang, F. Lu, T. Xue, X. Li, L. Zhang, D. Mao, L. Huang, F. Gao, T. Mei, J. Zhao. Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy. Photon. Res., 7, 526-531(2019).

    [17] J. Yu, Y. Saito, T. Ichimura, S. Kawata, P. Verma. Far-field free tapping-mode tip-enhanced Raman microscopy. Appl. Phys. Lett., 102, 123110(2013).

    [18] H. Sebastian, C. Nick, V. Aravind. Probing hotspots of plasmon-enhanced Raman scattering by nanomanipulation of carbon nanotubes. Nanotechnology, 29, 465710(2018).

    [19] E. Poliani, M. R. Wagner, A. Vierck, F. Herziger, C. Nenstiel, F. Gannott, M. Schweiger, S. Fritze, A. Dadgar, J. Zaumseil, A. Krost, A. Hoffmann, J. Maultzsch. Breakdown of far-field Raman selection rules by light-plasmon coupling demonstrated by tip-enhanced Raman scattering. J. Phys. Chem. Lett., 8, 5462-5471(2017).

    [20] L. Xiao, K. A. Bailey, H. Wang, Z. D. Schultz. Probing membrane receptor–ligand specificity with surface- and tip-enhanced Raman scattering. Anal. Chem., 89, 9091-9099(2017).

    [21] J. L. Toca-Herrera. Atomic force microscopy meets biophysics, bioengineering, chemistry and materials science. ChemSusChem, 12, 603-611(2018).

    [22] X. Ma, Y. Zhu, N. Yu, S. Kim, Q. Liu, L. Apontti, D. Xu, R. Yan, M. Liu. Toward high-contrast AFM-TERS imaging: nano-antenna-mediated remote-excitation on sharp-tip silver nanowire probes. Nano Lett., 19, 100-107(2018).

    [23] L. Meng, T. Huang, X. Wang, S. Chen, Z. Yang, B. Ren. Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration. Opt. Express, 23, 13804-13813(2015).

    [24] N. Kazemi-Zanjani, S. Vedraine, F. Lagugné-Labarthet. Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light. Opt. Express, 21, 25271-25276(2013).

    [25] M. Rahaman, A. G. Milekhin, A. Mukherjee, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, D. R. T. Zahn. The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering. Faraday Discuss., 214, 309-323(2019).

    [26] M. Zhang, J. Wang, Q. Tian. Tip-enhanced Raman spectroscopy based on plasmonic lens excitation and experimental detection. Opt. Express, 21, 9414-9421(2013).

    [27] H. Kano, S. Mizuguchi, S. Kawata. Excitation of surface-plasmon polaritons by a focused laser beam. J. Opt. Soc. Am. B, 15, 1381-1386(1998).

    [28] C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, X. Yuan. Focused plasmonic trapping of metallic particles. Nat. Commun., 4, 2891(2013).

    [29] I. Gryczynski, J. Malicka, Z. Gryczynski, J. R. Lakowicz. Surface plasmon-coupled emission with gold films. J. Phys. Chem. B, 108, 12568-12574(2004).

    [30] Y. Zhang, L. Cao, H. Chen, Y. Dai, Z. Man, G. Li, C. Min, H. P. Urbach, X. Yuan. Enhancement effect of Au claddings in tip enhanced Raman spectroscopy. Optik, 199, 163326(2019).

    [31] M. Moskovits. Surface-enhanced spectroscopy. Rev. Mod. Phys., 57, 783-826(1985).

    [32] C. Zhang, B.-Q. Chen, Z.-Y. Li. Optical origin of subnanometer resolution in tip-enhanced Raman mapping. J. Phys. Chem. C, 119, 11858-11871(2015).

    [33] P. Liu, X. Chen, H. Ye, L. Jensen. Resolving molecular structures with high-resolution tip-enhanced Raman scattering images. ACS Nano, 13, 9342-9351(2019).

    [34] Y. Fujita, P. Walke, S. De Feyter, H. Uji-i. Tip-enhanced Raman scattering microscopy: recent advance in tip production. Jpn. J. Appl. Phys., 55, 08NA02(2016).

    [35] X. Wang, Y. Zhang, Y. Dai, C. Min, X. Yuan. Enhancing plasmonic trapping with a perfect radially polarized beam. Photon. Res., 6, 847-852(2018).

    [36] C. Zhang, C. Min, L. Du, X.-C. Yuan. Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging. Appl. Phys. Lett., 108, 201601(2016).

    CLP Journals

    [1] Chuangye Zhang, Changjun Min, Yuquan Zhang, Yanan Fu, Ling Li, Yulong Wang, Xiaocong Yuan, "Detection of cylindrical vector beams with chiral plasmonic lens," Chin. Opt. Lett. 20, 023602 (2022)

    Houkai Chen, Yuquan Zhang, Yanmeng Dai, Changjun Min, Siwei Zhu, Xiaocong Yuan, "Facilitated tip-enhanced Raman scattering by focused gap-plasmon hybridization," Photonics Res. 8, 103 (2020)
    Download Citation