[1] A. K. H. Miller, R. L. Alston, J. A. N. Corsellis. Variation with age in the volumes of grey and white matter in the cerebral hemispheres of man — measurements with an image analyzer. Neuropathol. Appl. Neurobiol., 6, 119-132(1980).
[2] C. M. Filley. White matter and behavioral neurology. Ann. N.Y. Acad. Sci., 1064, 162-183(2005).
[3] Y. Tang, J. R. Nyengaard. A stereological method for estimating the total length and size of myelin fibers in human brain white matter. J. Neurosci. Meth., 73, 193-200(1997).
[4] R. D. Fields. White matter in learning, cognition and psychiatric disorders. Trends Neurosci., 31, 361-370(2008).
[5] H.-G. Bae, T. K. Kim, H. Y. Suk, S. Jung, D.-G. Jo. White matter and neurological disorders. Arch. Pharm. Res., 43, 920-931(2020).
[6] V. Kavcic, H. Ni, T. Zhu, J. Zhong, C. J. Duffy. White matter integrity linked to functional impairments in aging and early Alzheimer’s disease. Alzheimers. Dement., 4, 381-389(2008).
[7] R. Ohtomo, A. Iwata, K. Arai. Molecular mechanisms of oligodendrocyte regeneration in white matter-related diseases. Int. J. Mol. Sci., 19, 1743(2018).
[8] W. Denk, J. H. Strickler, W. W. Webb. Two-photon laser scanning fluorescence microscopy. Science, 248, 73-76(1990).
[9] L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, C. Xu. Measurements of multiphoton action cross sections for multiphoton microscopy. Biomed. Opt. Exp., 5, 3427-3433(2014).
[10] R. Kawakami et al. In vivo two-photon imaging of mouse hippocampal neurons in dentate gyrus using a light source based on a high-peak power gain-switched laser diode. Biomed. Opt. Exp., 6, 891-901(2015).
[11] S. Fan, S. Wang, C. Yang, F. Wise, L. Kong. Advances of mode-locking fiber lasers in neural imaging. Adv. Opt. Mater., 11, 2202945(2023).
[12] J. N. Stirman, I. T. Smith, M. W. Kudenov, S. L. Smith. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. Nat. Biotechnol., 34, 857-862(2016).
[13] D. G. Ouzounov et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat. Meth., 14, 388-390(2017).
[14] D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, C. Xu. Deep tissue multiphoton microscopy using longer wavelength excitation. Opt. Exp., 17, 13354-13364(2009).
[15] V. Ntziachristos. Going deeper than microscopy: The optical imaging frontier in biology. Nat. Meth., 7, 603-614(2010).
[16] P. Theer, W. Denk. On the fundamental imaging-depth limit in two-photon microscopy. J. Opt. Soc. Am. A-Opt. Image Sci. Vis., 23, 3139-3149(2006).
[17] A. Klioutchnikov et al. Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats. Nat. Meth., 17, 509-513(2020).
[18] M. J. Farrar, F. W. Wise, J. R. Fetcho, C. B. Schaffer. In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy. Biophys. J., 100, 1362-1371(2011).
[19] K. Wang, Y. Pan, X. Chen, S. Tong, H. Liang, Y. Lu, P. Qiu. 3-photon fluorescence and third-harmonic generation imaging of myelin sheaths in mouse digital skin in vivo: A comparative study. J. Innov. Opt. Health Sci., 15, 2250003(2021).
[20] D. Débarre et al. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Meth., 3, 47-53(2006).
[21] N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photon., 7, 205-209(2013).
[22] H. Liu et al. In vivo deep-brain structural and hemodynamic multiphoton microscopy enabled by quantum dots. Nano Lett., 19, 5260-5265(2019).
[23] E. Romanelli, C. D. Sorbara, I. Nikić, A. Dagkalis, T. Misgeld, M. Kerschensteiner. Cellular, subcellular and functional in vivo labeling of the spinal cord using vital dyes. Nat. Protoc., 8, 481-490(2013).
[24] H. Liu, J. Wang, Z. Zhuang, J. He, W. Wen, P. Qiu, K. Wang. Visualizing astrocytes in the deep mouse brain in vivo. J. Biophoton., 12, e201800420(2019).
[25] K. Wang, N. G. Horton, K. Charan, C. Xu. Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics. IEEE J. Sel. Top. Quantum Electron., 20, 50-60(2014).
[26] X. Chen, Y. Pan, P. Qiu, K. Wang. Deep-skin third-harmonic generation (THG) imaging in vivo excited at the 2200 nm window. J. Innov. Opt. Health Sci., 16, 2243004(2023).
[27] K. W. Dunn, M. M. Kamocka, J. H. McDonald. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol.-Cell Physiol., 300, C723-C742(2011).