• Laser & Optoelectronics Progress
  • Vol. 56, Issue 17, 170618 (2019)
Minghui Zhong1、2, Xiange Wang1、2, Kai Jiao1、2, Nian Si1、2, Xiaolin Liang1、2, Tiesong Xu1、2, Jing Xiao1、2, Jia Liu1、2, Zheming Zhao1、3, Xunsi Wang1、2、*, Peiqing Zhang1、2, Yongxing Liu1、2, Shixun Dai1、2, and Qiuhua Nie1、2
Author Affiliations
  • 1 Laboratory of Infrared Materials and Devices, Research Institute of Advanced Technology, Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315211, China
  • 2 Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo, Zhejiang 315211, China
  • 3 Nanhu College, Jiaxing University, Jiaxing, Zhejiang 314001, China
  • show less
    DOI: 10.3788/LOP56.170618 Cite this Article Set citation alerts
    Minghui Zhong, Xiange Wang, Kai Jiao, Nian Si, Xiaolin Liang, Tiesong Xu, Jing Xiao, Jia Liu, Zheming Zhao, Xunsi Wang, Peiqing Zhang, Yongxing Liu, Shixun Dai, Qiuhua Nie. Eco-Friendly Ge-Se Chalcogenide Fiber Extrusion Preparation and Supercontinuum Generation[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170618 Copy Citation Text show less
    References

    [1] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs[J]. Nature Photonics, 6, 440-449(2012).

    [2] Allen M G. Diode laser absorption sensors for gas-dynamic and combustion flows[J]. Measurement Science and Technology, 9, 545-562(1998).

    [3] Szpulak M, Fevrier S. Chalcogenide As2S3 suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing[J]. IEEE Photonics Technology Letters, 21, 884-886(2009).

    [4] Li Y, Liao M S, Xue T F et al. Research progress of mid-infrared supercontinuum in soft glass fiber[J]. Laser & Optoelectronics Progress, 55, 080001(2018).

    [5] Yin K, Zhang B, Cai Z et al. Fiber-optic pumping 2.0-5.5 μm spectral flat mid-infrared supercontinuum source[J]. Chinese Journal of Lasers, 43, 1215001(2016).

    [6] Gao P F, Li X H, Luo W F et al. Numerical simulation of effect of pump wavelength on mid-infrared supercontinuum[J]. Chinese Journal of Lasers, 44, 0703223(2017).

    [7] Xue Z G, Chen P, Tian Y M et al. Fabrication of single-mode As-Se infrared glass fiber and its performance[J]. Chinese Journal of Lasers, 45, 0706001(2018).

    [8] Churbanov M F, Snopatin G E, Shiryaev V S et al. Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics[J]. Journal of Non-Crystalline Solids, 357, 2352-2357(2011).

    [9] El-Amraoui M, Fatome J, Jules J C et al. Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers[J]. Optics Express, 18, 4547-4556(2010).

    [10] Théberge F, Thiré N, Daigle J F et al. Multioctave infrared supercontinuum generation in large-core As2S3 fibers[J]. Optics Letters, 39, 6474-6477(2014).

    [11] Cheng T L, Nagasaka K, Tuan T H et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber[J]. Optics Letters, 41, 2117-2120(2016).

    [12] Zhang B, Guo W, Yu Y et al. Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation[J]. Journal of the American Ceramic Society, 98, 1389-1392(2015).

    [13] Petersen C R, Møller U, Kubat I et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 8, 830-834(2014).

    [14] Liao F X, Wang X S, Nie Q H et al. Preparation and properties of low-loss core-cladding structure Ge-Te-Se fiber based on the extrusion technology[J]. Acta Photonica Sinica, 44, 1006003(2015).

    [15] Katsuyama T, Ishida K, Satoh S et al. Low loss Ge-Se chalcogenide glass optical fibers[J]. Applied Physics Letters, 45, 925-927(1984).

    [16] Parnell H, Furniss D, Tang Z Q et al. Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making[J]. Journal of the American Ceramic Society, 101, 208-219(2018).

    [17] Xu Y T, Guo H T, Lu M et al. Preparation and properties of low-loss core-cladding structural Ge-Sb-Se chalcogenide glass fibers[J]. Infrared and Laser Engineering, 44, 182-187(2015).

    [18] Nie Q H, Wang G X, Wang X S et al. Effect of Ga on optical properties of novel Te-based far infrared transmitting chalcogenide glasses[J]. Acta Physica Sinica, 59, 7949-7955(2010).

    [19] Xue Z G, Li Q L, Chen P et al. Mid-infrared supercontinuum in well-structured As-Se fibers based on peeled-extrusion[J]. Optical Materials, 89, 402-407(2019).

    [20] Sun J, Nie Q H, Wang X S et al. Reaserch on thermal and optical properties of novel Ge-Te-Se-Sn far infrared transmitting chalcogenide glasses[J]. Acta Optica Sinica, 31, 1116003(2011).

    [21] Zhao Z M, Wu B, Liu Y J et al. Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber[J]. Acta Physica Sinica, 65, 124205(2016).

    [22] Frosz M H. Validation of input-noise model for simulations of supercontinuum generation and rogue waves[J]. Optics Express, 18, 14778-14787(2010).

    [23] Zhao Z M, Wu B, Wang X S et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber[J]. Laser & Photonics Reviews, 11, 1700005(2017).

    [24] Ou H Y, Dai S X, Zhang P Q et al. Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber[J]. Optics Letters, 41, 3201-3204(2016).

    [25] Yao C F, Jia Z X, Li Z R et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber[J]. Optica, 5, 1264-1270(2018).

    [26] Li X, Li J, Cheng T L et al. Coherent supercontinuum in a silicate glass composite fiber with all-normal dispersion[J]. Proceedings of SPIE, 10100, 101001I(2017).

    [27] Gauthier J C, Robichaud L R, Fortin V et al. Mid-infrared supercontinuum generation in fluoride fiber amplifiers: current status and future perspectives[J]. Applied Physics B, 124, 122(2018).

    Minghui Zhong, Xiange Wang, Kai Jiao, Nian Si, Xiaolin Liang, Tiesong Xu, Jing Xiao, Jia Liu, Zheming Zhao, Xunsi Wang, Peiqing Zhang, Yongxing Liu, Shixun Dai, Qiuhua Nie. Eco-Friendly Ge-Se Chalcogenide Fiber Extrusion Preparation and Supercontinuum Generation[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170618
    Download Citation