• Acta Optica Sinica
  • Vol. 43, Issue 16, 1623025 (2023)
Yi Ma1、2, Jingyu Guo1、2, and Lin Chen1、2、*
Author Affiliations
  • 1School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Shanghai Key Laboratory of Modern Optical Systems, Shanghai 200093, China
  • show less
    DOI: 10.3788/AOS230810 Cite this Article Set citation alerts
    Yi Ma, Jingyu Guo, Lin Chen. Tunable Slow Light Performance Based on Graphene Metasurface[J]. Acta Optica Sinica, 2023, 43(16): 1623025 Copy Citation Text show less
    References

    [1] Ogawa Y, Hayashi S, Oikawa M et al. Interference terahertz label-free imaging for protein detection on a membrane[J]. Optics Express, 16, 22083-22089(2008).

    [2] Li Y Y, Chen X Y, Hu F R et al. Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein[J]. Journal of Physics D: Applied Physics, 52, 095105(2019).

    [3] Zeng Q P, Liu W T, Lin S J et al. Aptamer HB5 modified terahertz metasurface biosensor used for specific detection of HER2[J]. Sensors and Actuators B: Chemical, 355, 131337(2022).

    [4] Ergin T, Stenger N, Brenner P et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 328, 337-339(2010).

    [5] Xu R J, Liu X Y, Lin Y S. Tunable ultra-narrowband terahertz perfect absorber by using metal-insulator-metal microstructures[J]. Results in Physics, 13, 102176(2019).

    [6] Yuan T T, Wu J W, Bo Y H et al. Trace detection of nitrofuran drugs based on terahertz meta-surface sensor[J]. Acta Optica Sinica, 43, 0717001(2023).

    [7] Xu J J, Liao D G, Gupta M et al. Terahertz microfluidic sensing with dual-torus toroidal metasurfaces[J]. Advanced Optical Materials, 9, 2100024(2021).

    [8] Chen L, Liao D G, Guo X G et al. Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review[J]. Frontiers of Information Technology & Electronic Engineering, 20, 591-607(2019).

    [9] Chen H T, Padilla W J, Zide J M O et al. Active terahertz metamaterial devices[J]. Nature, 444, 597-600(2006).

    [10] Shrekenhamer D, Chen W C, Padilla W J. Liquid crystal tunable metamaterial absorber[J]. Physical Review Letters, 110, 177403(2013).

    [11] Huang C C, Zhang Y G, Liang L J et al. Narrow/broad band switchable terahertz absorber based on graphene and vanadium dioxide composite structure[J]. Acta Optica Sinica, 42, 1916001(2022).

    [12] Wu Y, La-o-vorakiat C, Qiu X P et al. Graphene terahertz modulators by ionic liquid gating[J]. Advanced Materials, 27, 1874-1879(2015).

    [13] Mostaan S M A, Saghaei H. A tunable broadband graphene-based metamaterial absorber in the far-infrared region[J]. Optical and Quantum Electronics, 53, 96(2021).

    [14] Chen Y F, Pan X S, Bao Z Y et al. Tunable terahertz perfect-absorbers with dual peak based on reverse graphene patch metamaterials[J]. IEEE Photonics Journal, 13, 4800312(2021).

    [15] Monfared Y E, Qasymeh M. Graphene-assisted infrared plasmonic metamaterial absorber for gas detection[J]. Results in Physics, 23, 103986(2021).

    [16] Zhao X L, Yuan C, Lü W H et al. Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators[J]. IEEE Photonics Technology Letters, 27, 1321-1324(2015).

    [17] Peng J, He X Y, Shi C et al. Investigation of graphene supported terahertz elliptical metamaterials[J]. Physica E: Low-Dimensional Systems and Nanostructures, 124, 114309(2020).

    [18] Chen L, Xu N N, Singh L et al. Defect-induced Fano resonances in corrugated plasmonic metamaterials[J]. Advanced Optical Materials, 5, 1600960(2017).

    [19] Patil C M, Arregui G, Mechlenborg M et al. Observation of slow light in glide-symmetric photonic-crystal waveguides[J]. Optics Express, 30, 12565-12575(2022).

    [20] Zong X Y, Li L X, Liu Y F. Bound states in the continuum in all-van der Waals photonic crystals: a route enabling electromagnetically induced transparency[J]. Optics Express, 30, 17897-17908(2022).

    [21] Khattak M I, Ullah Z, Al-Hasan M et al. Enhanced tunable plasmonic resonance in crumpled graphene resonators loaded with gate tunable metamaterials[J]. Optics Express, 28, 37860-37878(2020).

    [22] Yang S, Wang J Y, Zhang T et al. Temperature-voltage Bi-controllable broadband terahertz polarization conversion/absorption metasurface[J]. Acta Optica Sinica, 42, 0824001(2022).

    [23] Yu W, Meng H Y, Chen Z J et al. The bright-bright and bright-dark mode coupling-based planar metamaterial for plasmonic EIT-like effect[J]. Optics Communications, 414, 29-33(2018).

    [24] Ling Y H, Huang L R, Hong W et al. Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial[J]. Nanoscale, 10, 19517-19523(2018).

    [25] Han L, Tan Q L, Gan Y et al. Polarization-insensitive classical electromagnetically induced transparency metamaterial with large group delay by Dirac semimetal[J]. Results in Physics, 19, 103377(2020).

    [26] Bagci F, Akaoglu B. A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product[J]. Journal of Applied Physics, 123, 173101(2018).

    [27] Lu Q, Wang Z Z, Huang Q Z et al. Plasmon-induced transparency and high-performance slow light in a plasmonic single-mode and two-mode resonators coupled system[J]. Journal of Lightwave Technology, 35, 1710-1717(2017).

    [28] Han Z H, Bozhevolnyi S I. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices[J]. Optics Express, 19, 3251-3257(2011).

    [29] Xiong C X, Chao L, Zeng B et al. Dynamically controllable multi-switch and slow light based on a pyramid-shaped monolayer graphene metamaterial[J]. Physical Chemistry Chemical Physics, 23, 3949-3962(2021).

    Yi Ma, Jingyu Guo, Lin Chen. Tunable Slow Light Performance Based on Graphene Metasurface[J]. Acta Optica Sinica, 2023, 43(16): 1623025
    Download Citation