• High Power Laser and Particle Beams
  • Vol. 33, Issue 6, 065002 (2021)
Zheng Zhao, Chenjie Li, Xing Zhang, Xuchu Yuan, Anbang Sun, and Jiangtao Li
Author Affiliations
  • School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
  • show less
    DOI: 10.11884/HPLPB202133.210083 Cite this Article
    Zheng Zhao, Chenjie Li, Xing Zhang, Xuchu Yuan, Anbang Sun, Jiangtao Li. Research progress on evolution phenomena and mechanisms of repetitively pulsed streamer discharge[J]. High Power Laser and Particle Beams, 2021, 33(6): 065002 Copy Citation Text show less
    References

    [3] Li Yao, Yang Dezheng, Qiao Junjie, et al. The dynamic evolution and interaction with dielectric material of the discharge in packed bed reactor[J]. Plasma Sources Science and Technology, 29, 055004(2020).

    [5] Zhou Renwu, Zhou Rusen, Wang Peiyu, et al. Plasma-activated water: generation, origin of reactive species and biological applications[J]. Journal of Physics D: Applied Physics, 53, 303001(2020).

    [6] Mizuno K, Yonetamari K, Shirakawa Y, et al. Anti-tumor immune response induced by nanosecond pulsed streamer discharge in mice[J]. Journal of Physics D: Applied Physics, 50, 12LT01(2017).

    [7] Lu X, Naidis G V, Laroussi M, et al. Guided ionization waves: theory and experiments[J]. Physics Reports, 540, 123-166(2014).

    [10] Nijdam S, Teunissen J, Ebert U. The physics of streamer discharge phenomena[J]. Plasma Sources Science and Technology, 29, 103001(2020).

    [11] Zhao Zheng, Li Jiangtao. Repetitively pulsed gas discharges: memory effect and discharge mode transition[J]. High Voltage, 5, 569-582(2020).

    [12] Pai D Z, Lacoste D A, Laux C O. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure[J]. Journal of Applied Physics, 107, 093303(2010).

    [13] Zhang Cheng, Shao Tao, Yan Ping, et al. Nanosecond-pulse gliding discharges between point-to-point electrodes in open air[J]. Plasma Sources Science and Technology, 23, 035004(2014).

    [14] Tholin F, Bourdon A. Influence of the external electrical circuit on the regimes of a nanosecond repetitively pulsed discharge in air at atmospheric pressure[J]. Plasma Physics and Controlled Fusion, 57, 014016(2015).

    [15] Ding C, Khomenko A Y, Shcherbanev S A, et al. Filamentary nanosecond surface dielectric barrier discharge. Experimental comparison of the streamer-to-filament transition for positive and negative polarities[J]. Plasma Sources Science and Technology, 28, 085005(2019).

    [16] Nijdam S, Wormeester G, Van Veldhuizen E M, et al. Probing background ionization: positive streamers with varying pulse repetition rate and with a radioactive admixture[J]. Journal of Physics D: Applied Physics, 44, 455201(2011).

    [17] Simek M. Determination of N2(A3Σu+) metastable density produced by nitrogen streamers at atmospheric pressure: 2. Experimental verification[J]. Plasma Sources Science and Technology, 12, 454-463(2003).

    [18] Nijdam S, Takahashi E, Markosyan A H, et al. Investigation of positive streamers by double-pulse experiments, effects of repetition rate and gas mixture[J]. Plasma Sources Science and Technology, 23, 025008(2014).

    [19] Tholin F, Bourdon A. Simulation of the hydrodynamic expansion following a nanosecond pulsed spark discharge in air at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 46, 365205(2013).

    [20] Shao Tao, Sun Guangsheng, Yan Ping, et al. An experimental investigation of repetitive nanosecond-pulse breakdown in air[J]. Journal of Physics D: Applied Physics, 39, 2192-2197(2006).

    [21] Nagaraja S, Yang V, Adamovich I. Multi-scale modelling of pulsed nanosecond dielectric barrier plasma discharges in plane-to-plane geometry[J]. Journal of Physics D: Applied Physics, 46, 155205(2013).

    [22] Zhao Z, Li J T. Integrated effect on evolution of streamer dynamics under long-term repetitive sub-microsecond pulses in high-pressure nitrogen[J]. Plasma Sources Science and Technology, 28, 115019(2019).

    [24] Fu Pengyu, Zhao Zhibin, Li Xuebao, et al. The role of time-lag in the surface discharge inception under positive repetitive pulse voltage[J]. Physics of Plasmas, 25, 093518(2018).

    [25] Pejovic M M, Ristic G S. Memory effects in argon, nitrogen, and hydrogen[J]. IEEE Transactions on Plasma Science, 30, 1315-1319(2002).

    [26] Pejović M M, Živanović E, Pejović M M, et al. Analysis of processes responsible for the memory effect in air at low pressures[J]. Plasma Sources Science and Technology, 19, 045021(2010).

    [27] Shao Tao, Sun Guangsheng, Yan Ping, et al. Breakdown phenomena in nitrogen due to repetitive nanosecond-pulses[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 14, 813-819(2007).

    [28] Pai D Z, Lacoste D A, Laux C O. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime[J]. Plasma Sources Science and Technology, 19, 065015(2010).

    [29] Shao Tao. Study on repetitive nanosecondpulse breakdown in gases[D]. Beijing: Institute of Electrical Engineering of the Chinese Academy of Sciences, 2006

    [30] Pai D Z, Stancu G D, Lacoste D A, et al. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the glow regime[J]. Plasma Sources Science and Technology, 18, 045030(2009).

    [31] Naidis G V. Simulation of spark discharges in high-pressure air sustained by repetitive high-voltage nanosecond pulses[J]. Journal of Physics D: Applied Physics, 41, 234017(2008).

    [32] Höft H, Kettlitz M, Becker M M, et al. Breakdown characteristics in pulsed-driven dielectric barrier discharges: influence of the pre-breakdown phase due to volume memory effects[J]. Journal of Physics D: Applied Physics, 47, 465206(2014).

    [33] Nemschokmichal S, Tschiersch R, Höft H, et al. Impact of volume and surface processes on the pre-ionization of dielectric barrier discharges: advanced diagnostics and fluid modeling[J]. The European Physical Journal D, 72, 89(2018).

    [34] Acker F E, Penney G W. Influence of previous positive streamers on streamer propagation and breakdown in a positive point-to-plane gap[J]. Journal of Applied Physics, 39, 2363-2369(1968).

    [35] Hartmann G, Gallimberti I. The influence of metastable molecules on the streamer progression[J]. Journal of Physics D: Applied Physics, 8, 670-680(1975).

    [37] Tholin F, Bourdon A. Influence of temperature on the glow regime of a discharge in air at atmospheric pressure between two point electrodes[J]. Journal of Physics D: Applied Physics, 44, 385203(2011).

    [38] Li Y, Van Veldhuizen E M, Zhang G J, et al. Positive double-pulse streamers: how pulse-to-pulse delay influences initiation and propagation of subsequent discharges[J]. Plasma Sources Science and Technology, 27, 125003(2018).

    [39] Kazemi M R, Sugai T, Tokuchi A, et al. Study of pulsed atmospheric discharge using solid-state LTD[J]. IEEE Transactions on Plasma Science, 45, 2323-2327(2017).

    [40] MacGregor S J, Turnbull S M, Tuema F A, et al. Factors affecting and methods of improving the pulse repetition frequency of pulse-charged and DC-charged high-pressure gas switches[J]. IEEE Transactions on Plasma Science, 25, 110-117(1997).

    [41] Chen She, Heijmans L C J, Zeng Rong, et al. Nanosecond repetitively pulsed discharges in N2-O2 mixtures: inception cloud and streamer emergence[J]. Journal of Physics D: Applied Physics, 48, 175201(2015).

    [42] Komuro A, Ono R. Two-dimensional simulation of fast gas heating in an atmospheric pressure streamer discharge and humidity effects[J]. Journal of Physics D: Applied Physics, 47, 155202(2014).

    [43] Starikovskiy A, Pancheshnyi S, Rakitin A. Periodic pulse disge selffocusing streamertospark transition in undercritical electric field[C]Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Hizons Fum Aerospace Exposition. 2011.

    [44] Chen Xiancong, Zhu Yifei, Wu Yun. Modeling of streamer-to-spark transitions in the first pulse and the post discharge stage[J]. Plasma Sources Science and Technology, 29, 095006(2020).

    [45] Pancheshnyi S. Role of electronegative gas admixtures in streamer start, propagation and branching phenomena[J]. Plasma Sources Science and Technology, 14, 645-653(2005).

    [46] Tholin F, Bourdon A. Simulation of the stable ‘quasi-periodic’ glow regime of a nanosecond repetitively pulsed discharge in air at atmospheric pressure[J]. Plasma Sources Science and Technology, 22, 045014(2013).

    [47] Raĭzer Y P. Gas disge physics[M]. Berlin: SpringerVerlag, 1991.

    [48] Golubovskii Y B, Maiorov V A, Behnke J, et al. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen[J]. Journal of Physics D: Applied Physics, 35, 751-761(2002).

    [49] Deng Junbo, Matsuoka S, Kumada A, et al. The influence of residual charge on surface discharge propagation[J]. Journal of Physics D: Applied Physics, 43, 495203(2010).

    [50] Li Chuanyang, Lin Chuanjie, Zhang Bo, et al. Understanding surface charge accumulation and surface flashover on spacers in compressed gas insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 25, 1152-1166(2018).

    [51] Guaitella O, Marinov I, Rousseau A. Role of charge photodesorption in self-synchronized breakdown of surface streamers in air at atmospheric pressure[J]. Applied Physics Letters, 98, 071502(2011).

    [52] Winters C, Petrishchev V, Yin Zhiyao, et al. Surface charge dynamics and OH and H number density distributions in near-surface nanosecond pulse discharges at a liquid/vapor interface[J]. Journal of Physics D: Applied Physics, 48, 424002(2015).

    [54] Xie Qing, Ren Jie, Huang He, et al. Aging characteristics of epoxy resin discharged by very fast transient overvoltage in SF6[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 24, 1178-1188(2017).

    [55] Chang Chao, Liu Guozhi, Tang Chuanxiang, et al. Review of recent theories and experiments for improving high-power microwave window breakdown thresholds[J]. Physics of Plasmas, 18, 055702(2011).

    [56] Zeng Rong, Zhuang Chijie, Yu Zhanqing, et al. Electric field step in air gap streamer discharges[J]. Applied Physics Letters, 99, 221503(2011).

    [57] Wu Chuanqi. Research on the acteristics of long air gap positive streamer disge under impulse voltage[D]. Wuhan: Huazhong University of Science Technology, 2014

    [58] Nijdam S, Teunissen J, Takahashi E, et al. The role of free electrons in the guiding of positive streamers[J]. Plasma Sources Science and Technology, 25, 044001(2016).

    [59] Yuan Xuchu, Li Hanwei, Abbas M F, et al. A 3D numerical study of positive streamers interacting with localized plasma regions[J]. Journal of Physics D: Applied Physics, 53, 425204(2020).

    [60] Babaeva N Y, Naidis G V. Modeling of streamer interaction with localized plasma regions[J]. Plasma Sources Science and Technology, 27, 075018(2018).

    [61] Li Chenjie, Huang Zongze, Li Jiangtao, et al. Simulation of the disge regime transition under repetitive nanosecond pulses in nitrogen at atmospheric pressure[C]Proceedings of the 2020 IEEE International Conference on High Voltage Engineering Application (ICHVE). 2020: 9279861.

    [62] Tarasenko V. Runaway electrons in diffuse gas discharges[J]. Plasma Sources Science and Technology, 29, 034001(2020).

    [63] Iza F, Walsh J L, Kong M G. From submicrosecond- to nanosecond-pulsed atmospheric-pressure plasmas[J]. IEEE Transactions on Plasma Science, 37, 1289-1296(2009).

    [64] Ito T, Kanazawa T, Hamaguchi S. Rapid breakdown mechanisms of open air nanosecond dielectric barrier discharges[J]. Physical Review Letters, 107, 065002(2011).

    [65] Komuro A, Ono R, Oda T. Effects of pulse voltage rise rate on velocity, diameter and radical production of an atmospheric-pressure streamer discharge[J]. Plasma Sources Science and Technology, 22, 045002(2013).

    [66] Wang Douyan, Namihira T. Nanosecond pulsed streamer discharges: II. Physics, discharge characterization and plasma processing[J]. Plasma Sources Science and Technology, 29, 023001(2020).

    [67] Liu Zhengyan, Li Jie, Peng Bangfa, et al. Spatiotemporal analysis of streamer discharge in a wire-to-wire reactor with positive nanosecond pulse supply[J]. Journal of Physics D: Applied Physics, 53, 465203(2020).

    [68] Kolev Y D, Mesyats G A. Physics of pulsed breakdown in gases[M]. Yekaterinburg: URO Press, 1998.

    [69] Wang Douyan, Okada S, Matsumoto T, et al. Pulsed discharge induced by nanosecond pulsed power in atmospheric air[J]. IEEE Transactions on Plasma Science, 38, 2746-2751(2010).

    [70] Qi Fei, Li Yiyang, Zhou Rusen, et al. Uniform atmospheric pressure plasmas in a 7 mm air gap[J]. Applied Physics Letters, 115, 194101(2019).

    [71] Huang Bangdou, Takashima K, Zhu Ximing, et al. The influence of the repetition rate on the nanosecond pulsed pin-to-pin microdischarges[J]. Journal of Physics D: Applied Physics, 47, 422003(2014).

    [72] Huang Bangdou, Carbone E, Takashima K, et al. The effect of the pulse repetition rate on the fast ionization wave discharge[J]. Journal of Physics D: Applied Physics, 51, 225202(2018).

    [73] Zhao Z, Huang D D, Wang Y N, et al. Evolution of streamer dynamics and discharge mode transition in high-pressure nitrogen under long-term repetitive nanosecond pulses with different timescales[J]. Plasma Sources Science and Technology, 28, 085015(2019).

    [74] Popov N A. Investigation of the mechanism for rapid heating of nitrogen and air in gas discharges[J]. Plasma Physics Reports, 27, 886-896(2001).

    [75] Popov N A. Fast gas heating in a nitrogen–oxygen discharge plasma: I. Kinetic mechanism[J]. Journal of Physics D: Applied Physics, 44, 285201(2011).

    [76] Mintoussov E I, Pendleton S J, Gerbault F G, et al. Fast gas heating in nitrogen–oxygen discharge plasma: II. Energy exchange in the afterglow of a volume nanosecond discharge at moderate pressures[J]. Journal of Physics D: Applied Physics, 44, 285202(2011).

    [77] Xu D A, Lacoste D A, Rusterholtz D L, et al. Experimental study of the hydrodynamic expansion following a nanosecond repetitively pulsed discharge in air[J]. Applied Physics Letters, 99, 121502(2011).

    [78] Rusterholtz D L, Lacoste D A, Stancu G D, et al. Ultrafast heating and oxygen dissociation in atmospheric pressure air by nanosecond repetitively pulsed discharges[J]. Journal of Physics D: Applied Physics, 46, 464010(2013).

    [80] Shao Tao, Zhang Cheng, Niu Zheng, et al. Diffuse discharge, runaway electron, and x-ray in atmospheric pressure air in an inhomogeneous electrical field in repetitive pulsed modes[J]. Applied Physics Letters, 98, 021503(2011).

    Zheng Zhao, Chenjie Li, Xing Zhang, Xuchu Yuan, Anbang Sun, Jiangtao Li. Research progress on evolution phenomena and mechanisms of repetitively pulsed streamer discharge[J]. High Power Laser and Particle Beams, 2021, 33(6): 065002
    Download Citation