• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101019 (2022)
Mengmeng Tao1、2、**, Xisheng Ye1、*, Jingfeng Ye2, Ting Yu1, Zhao Quan1, Yunfeng Qi1, Guobin Feng2, and Weibiao Chen1
Author Affiliations
  • 1Shaihai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi’an, Shaanxi 710024, China
  • show less
    DOI: 10.3788/CJL202249.0101019 Cite this Article Set citation alerts
    Mengmeng Tao, Xisheng Ye, Jingfeng Ye, Ting Yu, Zhao Quan, Yunfeng Qi, Guobin Feng, Weibiao Chen. Modeling In-band Pumped kW Level High-Power Tm-Doped Fiber Lasers via Simulations[J]. Chinese Journal of Lasers, 2022, 49(1): 0101019 Copy Citation Text show less
    References

    [1] Jackson S D, King T A.. Theoretical modeling of Tm-doped silica fiber lasers[J]. Journal of Lightwave Technology, 17, 948-956(1999).

    [2] Fried N M, Blackmon R L, Irby P B.. A review of thulium fiber laser ablation of kidney stones[J], 7914, 791402(2011).

    [3] Kronenberg P, Traxer O.. The laser of the future: Reality and expectations about the new thulium fiber laser-a systematic review[J]. Translational Andrology and Urology, 8, S398-S417(2019).

    [4] Barnes N P, Walsh B M, Reichle D J et al. Tm: fiber lasers for remote sensing[J]. Optical Materials, 31, 1061-1064(2009).

    [5] Fjodorow P, Hellmig O, Baev V M.. A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 μm for intracavity absorption spectroscopy[J]. Applied Physics B, 124, 1-8(2018).

    [6] Tao M M, Tao B, Hu Z Y et al. Development of a 2 μm Tm-doped fiber laser for hyperspectral absorption spectroscopy applications[J]. Optics Express, 25, 32386-23294(2017).

    [7] Tao M M, Tao B, Ye J F et al. Linewidth compression of tunable Tm-doped fiber laser and its hyperspectral absorption application[J]. Acta Physica Sinica, 69, 034205(2020).

    [8] Creeden D, Blanchard J, Pretorius H et al. 486nm blue laser operating at 500 kHz pulse repetition frequency[J], 9728, 972829(2016).

    [9] Fu Q, Xu L, Liang S J et al. Widely tunable, narrow-linewidth, high-peak-power, picosecond midinfrared optical parametric amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 5100706(2018).

    [10] Bu X B, Shi H X, Cheng Z C et al. Tunable narrow-linewidth Cr∶ZnSe laser pumped by thulium-doped fiber laser[J]. Chinese Journal of Lasers, 44, 0201014(2017).

    [11] Hemming A, Richards J, Davidson A et al. 99 W mid-IR operation of a ZGP OPO at 25% duty cycle[J]. Optics Express, 21, 10062-10069(2013).

    [12] Goodno G D, Book L D, Rothenberg J E et al. Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers[J]. Optical Engineering, 50, 111608(2011).

    [13] Dawson J W, Messerly M J, Beach R J et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 16, 13240-13266(2008).

    [14] Zhu J J, Zhou P, Ma Y X et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 19, 18645-18654(2011).

    [15] Zhu J J, Du W B, Zhou P et al. Numerical study on power limit of single-mode fiber lasers[J]. Acta Physica Sinica, 61, 064209(2012).

    [16] Zhu Y D, Zhou P, Zhang H W et al. Analysis of the power scaling of resonantly pumped Tm-doped silica fiber lasers[J], 8904, 89040R(2013).

    [17] Smith A V, Smith J J.. Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm[J]. Optics Express, 24, 975-992(2016).

    [18] Jauregui C, Otto H J, Stutzki F et al. Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening[J]. Optics Express, 23, 20203-20218(2015).

    [19] Gaida C, Gebhardt M, Heuermann T et al. Ultrafast thulium fiber laser system emitting more than 1 kW of average power[J]. Optics Letters, 43, 5853(2018).

    [20] Ehrenreich T, Leveille R, Majid I et al. 1-kW, all-glass Tm: fiber laser[J], 7580, 758016(2010).

    [21] Walbaum T, Heinzig M, Schreiber T et al. Monolithic thulium fiber laser with 567 W output power at 1970 nm[J]. Optics Letters, 41, 2632-2635(2016).

    [22] Anderson B M, Solomon J, Flores A.. 1.1 kW, beam-combinable thulium doped all-fiber amplifier[J], 1166, 116650B(2021).

    [23] Kotov L V, Aleshkina S S, Khudyakov M M et al. High-brightness multimode fiber lasers for resonant pumping[J]. Journal of Lightwave Technology, 35, 4540-4546(2017).

    [24] Zhou P, Xiao H, Leng J Y et al. High-power fiber lasers based on tandem pumping[J]. Journal of the Optical Society of America B, 34, A29-A36(2017).

    [25] Meleshkevich M, Platonov N, Gapontsev D et al. 415W single-mode CW thulium fiber laser in all-fiber format[C](2007).

    [26] Creeden D, Johnson B R, Setzler S D et al. Resonantly pumped Tm-doped fiber laser with >90% slope efficiency[J]. Optics Letters, 39, 470-473(2014).

    [27] Creeden D, Johnson B R, Rines G A et al. High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations[J]. Optics Express, 22, 29067-29080(2014).

    [28] Wang Y, Yang J L, Huang C Y et al. High power tandem-pumped thulium-doped fiber laser[J]. Optics Express, 23, 2991-2998(2015).

    [29] Peng Z L, Ma S C, Lu S H et al. Numerical simulation and experimental study of gain-switched thulium-doped fiber laser[J]. Laser & Optoelectronics Progress, 57, 191404(2020).

    [30] Kelson I, Hardy A A.. Strongly pumped fiber lasers[J]. IEEE Journal of Quantum Electronics, 34, 1570-1577(1998).

    [31] Yang W Q, Hou J, Song R et al. Theoretical analysis of two-stage pumping technology for high power fiber lasers[J]. Acta Physica Sinica, 60, 084210(2011).

    [32] Parthasarathy T A.. Predicted performance limits of yttrium aluminum garnet fiber lasers[J]. Optical Engineering, 49, 094302(2010).

    [33] Wang X, Zhou P, Wang X et al. 102 W monolithic single frequency Tm-doped fiber MOPA[J]. Optics Express, 21, 32386-32392(2013).

    [34] Tao M M, Chen H W, Feng G B et al. Thermal modeling of high-power Yb-doped fiber lasers with irradiated active fibers[J]. Optics Express, 28, 10104-10123(2020).

    [35] Jauregui C, Stihler C, Limpert J.. Transverse mode instability[J]. Advances in Optics and Photonics, 12, 429-484(2020).

    [36] Lucas E, Lombard L, Jaouën Y et al. 1 kW peak power, 110 ns single-frequency thulium doped fiber amplifier at 2050 nm[J]. Applied Optics, 53, 4413-4420(2014).

    [37] Brown D C, Hoffman H J.. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers[J]. IEEE Journal of Quantum Electronics, 37, 207-217(2001).

    Mengmeng Tao, Xisheng Ye, Jingfeng Ye, Ting Yu, Zhao Quan, Yunfeng Qi, Guobin Feng, Weibiao Chen. Modeling In-band Pumped kW Level High-Power Tm-Doped Fiber Lasers via Simulations[J]. Chinese Journal of Lasers, 2022, 49(1): 0101019
    Download Citation