• Chinese Journal of Quantum Electronics
  • Vol. 33, Issue 5, 553 (2016)
Yueyue CHEN1、2、*, Chengpu LIU1, and Xunli FENG3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2016.05.007 Cite this Article
    CHEN Yueyue, LIU Chengpu, FENG Xunli. Quantum computation in decoherence-free subspaces for overcoming bit-flip error in cavity QED[J]. Chinese Journal of Quantum Electronics, 2016, 33(5): 553 Copy Citation Text show less
    References

    [1] Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM J. Sci. Statist. Comput., 1997, 2(5): 1484-1509.

    [2] Grover L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Phys. Rev. Lett., 1997, 79(2): 325-328.

    [3] Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Phys. Rev. Lett., 1993, 70(13): 1895-1899.

    [4] Bennett C H, Shor P W. Quantum information theory[J]. IEEE Trans. Inform. Theory, 1998, 44(6): 2724-2742.

    [5] Chuang I L, Yamamoto Y. Simple quantum computer[J]. Phys. Rev. A, 1995, 52(5): 3489-3496.

    [6] Veis L, Visnak J, Fleig T, et al. Relativistic quantum chemistry on quantum computers[J]. Phys. Rev. A, 2012, 85(3): 030304.

    [7] Lidar D A, Chuang I L, Whaley K B. Decoherence-free subspaces for quantum computation[J]. Phys. Rev. Lett., 1998, 81(12): 2594-2597.

    [8] Shor P W. Scheme for reducing decoherence in quantum computer memory[J]. Phys. Rev. A, 1995, 52 (4): R2493-R2496.

    [9] Steane A M. Error correcting codes in quantum theory[J]. Phys. Rev. Lett., 1996, 77(5): 793-797.

    [10] Knill E, Laflamme R. Theory of quantum error-correcting codes[J]. Phys. Rev. A, 1997, 55(2): 900-911.

    [11] Calderbank A R, Rains E M, Shor P W, et al. Quantum error correction and orthogonal geometry[J]. Phys. Rev. Lett., 1997, 78(3): 405-408.

    [12] Zhou Zhengwei, Yu Bo, Zhou Xingxiang, et al. Scalable fault-tolerant quantum computation in decoherence-free subspaces[J]. Phys. Rev. Lett., 2004, 93(1): 010501.

    [13] Brion E, Pedersen L H, Mmer K, et al. Universal quantum computation in a neutral-atom decoherence-free subspace[J]. Phys. Rev. A, 2007, 75(3): 032328.

    [14] Viola L, Knill E, Lloyd S. Dynamical decoupling of open quantum systems[J]. Phys. Rev. Lett., 1999, 82(12): 2417-2421.

    [15] Zhu S L, Wang Z D. Implementation of universal quantum gates based on nonadiabatic geometric phases[J]. Phys. Rev. Lett., 2002, 89(9): 097902.

    [16] Zanardi P, Rasetti M. Noiseless quantum codes[J]. Phys. Rev. Lett., 1997, 79(17): 3306-3309.

    [17] Duan Luming, Guo Guangcan. Preserving coherence in quantum computation by pairing quantum bits[J]. Phys. Rev. Lett., 1997, 79(10): 1953-1956.

    [18] Wu Chunfeng, Feng Xunli, et al. Quantum gate operations in the decoherence-free subspace of superconducting quantum-interference devices[J]. Phys. Rev. A, 2008, 78(6): 062321.

    [19] Ivanov P A, Poschinger U G, Singer K, et al. Quantum gate in the decoherence-free subspace of trapped-ion qubits[J]. Europhys. Lett., 2010, 92(3): 30006.

    [20] Chen Yueyue, Feng Xunli, Oh C H. Geometric entangling gates for coupled cavity system in decoherence-free subspaces[J]. Opt. Comm., 2012, 285(24): 5554-5557.

    [21] Chen Yueyue, Feng Xunli, et al. Quantum computation in the decoherence-free subspaces with cavity QED[J]. Quantum Inf. Process, 2014, 13(2): 547-557.

    [22] Zhang Zurong, Li Chunyan, Wu Chunwang, et al. Universal quantum computation in a decoherence-free subspace for the σx-type collective noise with superconducting charge qubits[J]. Phys. Rev. A, 2012, 8(4): 042320.

    [23] Lidar D A, Bacon D, et al. Decoherence-free subspaces for multiple-qubit errors. I. Characterization[J]. Phys. Rev. A, 2001, 63(2): 022306.

    [24] James D F V. Quantum computation with hot and cold ions: An assessment of proposed schemes[J]. Fortschritte der Physik, 2000, 48(9-11): 823-837.

    [25] Zheng Shibiao, Guo Guangcan. Efficient scheme for two-atom entanglement and quantum information processing in cavity QED[J]. Phys. Rev. Lett., 2000, 85(11): 2392-2395.

    [28] Tan S. Quantum optics toolbox for Matlab[OL]. http://www.qo.phy.auckland.ac.nz/html/qotoolbox.html.

    CHEN Yueyue, LIU Chengpu, FENG Xunli. Quantum computation in decoherence-free subspaces for overcoming bit-flip error in cavity QED[J]. Chinese Journal of Quantum Electronics, 2016, 33(5): 553
    Download Citation