• Acta Physica Sinica
  • Vol. 69, Issue 7, 077102-1 (2020)
Peng Ye*
Author Affiliations
  • School of Physics, Sun Yat-sen University, Guangzhou 510275, China
  • show less
    DOI: 10.7498/aps.69.20200197 Cite this Article
    Peng Ye. Gauge theory of strongly-correlated symmetric topological Phases[J]. Acta Physica Sinica, 2020, 69(7): 077102-1 Copy Citation Text show less

    Abstract

    In the presence of symmetry-protection, topological invariants of topological phases of matter in free fermion systems, e.g., topological band insulators, can be directly computed via the properties of band structure. Nevertheless, it is usually difficult to extract topological invariants in strongly-correlated topological phases of matter in which band structure is not well-defined. One typical example is the fractional quantum Hall effect whose low-energy physics is governed by Chern-Simons topological gauge theory and Hall conductivity plateaus involve extremely fruitful physics of strong correlation. In this article, we focus on intrinsic topological order (iTO), symmetry-protected topological phases (SPT), and symmetry-enriched topological phases (SET) in boson and spin systems. Through gauge field-theoretical approach, we review some research progress on these topological phases of matter from the aspects of projective construction, low-energy effective theory and topological response theory.
    $ S = \frac{k}{4{\text{π}}} \int a \wedge {\rm d}a ,$(1)

    View in Article

    $ \begin{aligned} N^{f1}_ \uparrow \; &= N^{f1}_ \downarrow = N^{f2}_ \uparrow = N^{f2}_ \downarrow \\ &= \frac{1}{2} N^{f1} = \frac{1}{2}N^{f2} = 2 N_{\rm cell} = 2 N_{\rm latt}/q.\end{aligned} $()

    View in Article

    $ \begin{aligned}N^{f1}_ \uparrow \;&= N^{f1}_ \downarrow = N^{f2}_ \uparrow = N^{f2}_ \downarrow \\ &= \frac{1}{2}N^{f1} = \frac{1}{2}N^{f2} = N_{\rm cell} = N_{\rm latt}/q.\end{aligned} $()

    View in Article

    $ \begin{aligned}N^{f1}_ \uparrow \;&= N^{f1}_ \downarrow = N^{f2}_ \uparrow = N^{f2}_ \downarrow\\ &=\frac{1}{2}N^{f1} = \frac{1}{2}N^{f2} = N_{\rm cell} = N_{\rm latt}/q.\end{aligned} $()

    View in Article

    $ N^{f1}_ \uparrow = N^{f1}_ \downarrow = \frac{1}{2}N^{f1} = N_{\rm cell} = N_{\rm latt}/q .$()

    View in Article

    $ S = \int \frac{{{K_{IJ}}}}{{4{\text{π}} }}{a^I} \wedge {\rm d}{a^J} + \frac{{q_c^I}}{{2{\text{π}} }}{A^c} \wedge {\rm d}{a^I} + \frac{{q_s^I}}{{2{\text{π}} }}{A^s} \wedge {\rm d}{a^I} + \cdots .$(2)

    View in Article

    $K = \left( {\begin{array}{*{20}{c}} 1&0&0&0&0&0&0&0\\ 0&1&0&0&0&0&0&0\\ 0&0&{ - 1}&0&0&0&0&0\\ 0&0&0&{ - 1}&0&0&0&0\\ 0&0&0&0&1&0&0&0\\ 0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&{ - 1}&0\\ 0&0&0&0&0&0&0&{ - 1} \end{array}} \right) .$(3)

    View in Article

    $ K = \left( {\begin{array}{*{20}{c}} 1&0&0&0\\ 0&{ - 1}&0&0\\ 0&0&1&0\\ 0&0&0&{ - 1} \end{array}} \right) . $(4)

    View in Article

    $ K = \left( {\begin{array}{*{20}{c}} 1&0\\ 0&{ - 1} \end{array}} \right) .$(5)

    View in Article

    $\begin{split} \;& {H_{{\rm{int}}}} = {U_1}\sum\limits_i {{{({n_{i1}} - {n_{i2}})}^2}} \\ &+ {U_2}\sum\limits_i {\left[ {{{({n_{i1 \uparrow }} - {n_{i2 \downarrow }})}^2} + {{({n_{i1 \downarrow }} - {n_{i2 \uparrow }})}^2}} \right]} \\ & + {U_3}\sum\limits_i {\left[ {{{({n_{i,1 \uparrow }} - {n_{i2 \uparrow }})}^2} + {{({n_{i1 \downarrow }} - {n_{i2 \downarrow }})}^2}} \right]} \\ & + {U_4}\sum\limits_i {\left[ {{{({n_{i1 \uparrow }} + {n_{i2 \downarrow }} - 1)}^2} + {{({n_{i1 \downarrow }} + {n_{i2 \uparrow }} - 1)}^2}} \right]} \\ & + {U_5}\sum\limits_i {{{({n_{i1}} + {n_{i2}} - 1)}^2}} + {U_6}\sum\limits_i {{{({n_{i1}} - 1)}^2}} \\ &+ {U_7}\sum\limits_i ( {n_{i1 \uparrow }} - {n_{i1 \downarrow }}{)^2}. \\[-15pt] \end{split}$(6)

    View in Article

    $ \begin{align} &{\cal{L}}_{\rm Resp.} = \frac{1}{2} \begin{pmatrix} A^c_\mu& A^s_\mu \end{pmatrix} \begin{pmatrix} \sigma^c&\sigma^{cs}\\ \sigma^{cs}&\sigma^{s} \end{pmatrix}\partial_{\nu} \begin{pmatrix} A^c_\lambda\\ A^s_\lambda \end{pmatrix}\epsilon^{\mu\nu\lambda}\,. \end{align} $(7)

    View in Article

    $\begin{split} &\left( {\begin{array}{*{20}{c}} 0&{ - 1}&{ - 1}&{ - 1}&1&1&1\\ { - 1}&0&{ - 1}&{ - 1}&1&1&1\\ { - 1}&{ - 1}&{ - 2}&{ - 1}&1&1&1\\ { - 1}&{ - 1}&{ - 1}&{ - 2}&1&1&1\\ 1&1&1&1&0&{ - 1}&{ - 1}\\ 1&1&1&1&{ - 1}&0&{ - 1}\\ 1&1&1&1&{ - 1}&{ - 1}&{ - 2} \end{array}} \right),\\ &\left( {\begin{array}{*{20}{c}} 2\\ 2\\ 2\\ 2\\ 0\\ 0\\ 0 \end{array}} \right),\left( {\begin{array}{*{20}{c}} 0\\ { - 1}\\ 0\\ { - 1}\\ 1\\ 0\\ 1 \end{array}} \right).\end{split}$(8)

    View in Article

    $ \begin{split} & K \to WK{W^{\rm T}} \\=\;& \left( {\begin{array}{*{20}{c}} 0&{ - 1}&{ - 1}&{ - 1}&1&1&0\\ { - 1}&0&{ - 1}&{ - 1}&1&1&0\\ { - 1}&{ - 1}&{ - 2}&{ - 1}&1&1&0\\ { - 1}&{ - 1}&{ - 1}&{ - 2}&1&1&0\\ 1&1&1&1&0&{ - 1}&0\\ 1&1&1&1&{ - 1}&0&0\\ 0&0&0&0&0&0&0 \end{array}} \right),\\ {q_c} \to W{q_c} = \;& {\left( {\begin{array}{*{20}{c}} 2&2&2&2&0&0&0 \end{array}} \right)^{\rm T}},\\ {q_s} \to W{q_s} =\;& {\left( {\begin{array}{*{20}{c}} 0&{ - 1}&0&{ - 1}&1&0&0 \end{array}} \right)^{\rm T}},\\ {\text{其中}},\;W =\;& \left( {\begin{array}{*{20}{c}} 1&0&0&0&0&0&0\\ 0&1&0&0&0&0&0\\ 0&0&1&0&0&0&0\\ 0&0&0&1&0&0&0\\ 0&0&0&0&1&0&0\\ 0&0&0&0&0&1&0\\ 1&1&{ - 1}&{ - 1}&{ - 1}&{ - 1}&1 \end{array}} \right)\\[-45pt] \end{split}$(9)

    View in Article

    $ \begin{split} & K = \left( {\begin{array}{*{20}{c}} 0&{ - 1}&{ - 1}&{ - 1}&1&1\\ { - 1}&0&{ - 1}&{ - 1}&1&1\\ { - 1}&{ - 1}&{ - 2}&{ - 1}&1&1\\ { - 1}&{ - 1}&{ - 1}&{ - 2}&1&1\\ 1&1&1&1&0&{ - 1}\\ 1&1&1&1&{ - 1}&0 \end{array}} \right),\\ & {q_c} = {\left( {\begin{array}{*{20}{c}} 2&2&2&2&0&0 \end{array}} \right)^{\rm T}},\\ & {q_s} = {\left( {\begin{array}{*{20}{c}} 0&{ - 1}&0&{ - 1}&1&0 \end{array}} \right)^{\rm T}} \end{split} $(10)

    View in Article

    $K \!=\! \left(\!\!\!{\begin{array}{*{20}{c}} 0&{ - 1}&1\\ { - 1}&{ - 2}&1\\ 1&1&0 \end{array}}\!\!\!\right),{q_c}\! =\! \left( {\begin{aligned} 2\\ 2\\ 0 \end{aligned}} \right),{q_s} \!=\! \left( {\begin{aligned} \;0\;\\ {-1}\\ \;1\; \end{aligned}} \right) . $(11)

    View in Article

    $\begin{split} & K \to WK{W^{\rm T}} = \left( {\begin{array}{*{20}{c}} 0&1&0\\ 1&0&0\\ 0&0&0 \end{array}} \right), \\& {q_c} \to W{q_c} = \left( {\begin{array}{*{20}{c}} 0\\ 2\\ 0 \end{array}} \right),\end{split} $(12)

    View in Article

    $ {q_s} \to W{q_s} = \left( {\begin{aligned} 1\\ 0\\ 0 \end{aligned}} \right){\rm{,}}\; W = \left( {\begin{array}{*{20}{c}} {\rm{0}}&{\rm{0}}&{\rm{1}}\\ {\rm{1}}&{\rm{0}}&{\rm{0}}\\ {{\rm{ - 1}}}&{\rm{1}}&{\rm{1}} \end{array}} \right) . $(13)

    View in Article

    $ {\cal{L}}[a^3] = -\frac{2}{2{\text{π}}}A^s_\mu\partial_\nu a^3_\lambda\epsilon^{\mu\nu\lambda}+\frac{1}{g^2}(\partial_\nu a^3_\lambda\epsilon^{\mu\nu\lambda} )^2 $(14)

    View in Article

    $ {\cal{L}}\sim g^2(\partial_\mu\theta+2A^s_\mu)^2. $(15)

    View in Article

    $K = \left( {\begin{array}{*{20}{c}} 0&1&{ - 1}&0\\ 1&0&1&0\\ { - 1}&1&0&2\\ 0&0&2&0 \end{array}} \right),$(16)

    View in Article

    $ K = 0\,,~~q_c = 0\,,~~q_s = 1. $(17)

    View in Article

    $ K = \left( {\begin{array}{*{20}{c}} 2&0\\ 0&{ - 2} \end{array}} \right),~~{q_c} = \left( {\begin{aligned} 0\\ 0 \end{aligned}} \right),~~{q_s} = \left( {\begin{aligned} \;1\;\\ { - 1} \end{aligned}} \right) . $(18)

    View in Article

    $ \left( {\begin{array}{*{20}{c}} {{A_\mu }}\\ {{a_\mu }}\\ {{b_\mu }} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 0&{ - 1}&{ - 1}\\ 1&1&2 \end{array}} \right)\left( {\begin{array}{*{20}{c}} {A_\mu ^{f1}}\\ {A_\mu ^{f2}}\\ {A_\mu ^{f3}} \end{array}} \right) .$(19)

    View in Article

    $ \left( {\begin{array}{*{20}{c}} {{N_A}}\\ {{N_a}}\\ {{N_b}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 1&1&{ - 1}\\ 1&{ - 1}&0\\ 0&{ - 1}&1 \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{N^{f1}}}\\ {{N^{f2}}}\\ {{N^{f3}}} \end{array}} \right), $(20)

    View in Article

    $\left( {\begin{array}{*{20}{c}} M\\ {N_m^a}\\ {N_m^b} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 0&{ - 1}&{ - 1}\\ 1&1&2 \end{array}} \right)\left( {\begin{array}{*{20}{c}} {N_m^{f1}}\\ {N_m^{f2}}\\ {N_m^{f3}} \end{array}} \right) . $(21)

    View in Article

    $ S = \frac{1}{{2{\text{π}} }}\sum\limits_I^2 \int {b^I} \wedge {\rm d}{a^I} + p\int {a^1} \wedge {a^2} \wedge {\rm d}{a^2} + {S_M} .$(22)

    View in Article

    $ \begin{split} S_M = &\int {\rm d}^4x\bigg[\frac{1}{2\chi}(p {a}^2_\nu \partial_\lambda {a}^2_\rho\epsilon^{\mu\nu\lambda\rho}+\frac{1}{4{\text{π}}}\partial_\nu b^1_{\lambda\rho}\epsilon^{\mu\nu\lambda\rho})^2 \\ & + \frac{1}{2\chi}(-p {a}^1_\nu \partial_\lambda {a}^2_\rho\epsilon^{\mu\nu\lambda\rho}+\frac{1}{4{\text{π}}}\partial_\nu b^2_{\lambda\rho}\epsilon^{\mu\nu\lambda\rho})^2\\ &+\sum\limits_I^2 \frac{(f^I_{\mu\nu})^2}{4g^2}\bigg]\,. \\[-18pt]\end{split} $(23)

    View in Article

    $a^I\rightarrow a^I+\,d\chi^I\,,\,b^I\rightarrow b^I+\,{\rm d} V^I -2{\text{π}} p \,\epsilon^{IJ3} \chi^J \,{\rm d} a^2\,. $(24)

    View in Article

    $ \int_{{\cal{M}}^1} \,{\rm d}\chi^I = 2{\text{π}} n^I\,;~~\, \int_{{\cal{M}}^2} \,{\rm d}V^I = 2{\text{π}} k^I.$(25)

    View in Article

    $\begin{split}&\exp \left({{\rm i}\int_{{\cal{M}}^1} a^I}\right),\\ &\exp \left({{\rm i}\int_{{\cal{M}}^2} b^I - {\rm i} 2{\text{π}} p\int_{{\cal{V}}^3} \epsilon^{IJ3} a^J \wedge {\rm d} a^2} \right). \end{split}$(26)

    View in Article

    $S = \int {\sum\limits_I^4 {\frac{1}{{2{\text{π}} }}} } {b^I} \wedge {\rm d}{a^I} + \int {\sum\limits_{IJ} {\frac{{{\varLambda ^{IJ}}}}{{4{\text{π}} }}} } {b^I} \wedge {b^J} .$(27)

    View in Article

    $ \Lambda = \left( {\begin{array}{*{20}{c}} 2&1&1&1\\ 1&2&0&0\\ 1&0&2&0\\ 1&0&0&2 \end{array}} \right) .$(28)

    View in Article

    $ \begin{split} S = & \sum\limits_I \int \frac{N_I}{2{\text{π}}}B^I \wedge {\rm d} A^I + \sum\limits_{IJK}p^{IJK} \int A^I \wedge A^J \wedge {\rm d} A^K\\ &+\sum\limits_{IJKL}c^{IJKL}A^I\wedge A^J\wedge A^K\wedge A^L\,.\\[-18pt] \end{split} $(29)

    View in Article

    $ S = \sum\limits_I^3 {\int {\frac{{{N_I}}}{{2{\text{π}} }}} } {B^I} \wedge {\rm d}{A^I} + \int {\frac{q}{{{{(2{\text{π}} )}^3}}}} {A^1} \wedge {A^2} \wedge {B^3} .$(30)

    View in Article

    $ \begin{align} S_{\rm BR} = \frac{2{\text{π}} k_{ij,k}}{N_{ijk}}\bar{\mu}({m_{i}},{m_{j}},\gamma_{e_{k}}) = \frac{2{\text{π}} k_{ij,k}}{N_{ijk}} . \end{align} $(31)

    View in Article

    $ S = \int \sum\limits_{i = 1}^m \frac{N_i}{2{\text{π}}} b^i \wedge {\rm d}a^i+S_{c}+S_{\rm int}\,.$(32)

    View in Article

    $ S_c = \int \sum\limits_{i = 1}^k \sum\limits_{j = 1}^m \frac{Q_{ij}}{2{\text{π}}} A^i \wedge {\rm d}b^j $(33)

    View in Article

    $ S = {\rm i}\frac{\theta}{8{\text{π}}^2}\int F \wedge F+\frac{1}{2g^2}\int F\wedge * F. $(34)

    View in Article

    $ \tau\rightarrow -\frac{1}{t^4\tau}\,,\,\,\tau\rightarrow \tau+\frac{1}{t^2}. $(35)

    View in Article

    $ {\rm{TI}}\boxtimes{\rm{TI}} = {\rm{Vac}} . $(36)

    View in Article

    $ S = \int \frac{\varTheta_{IJ}}{8{\text{π}}^2} {\rm d} A^{I} \wedge {\rm d} A^{J} . $(37)

    View in Article

    $S_0\equiv \int {\rm d}^4 x \frac{\theta_0}{4{\text{π}}^2}\partial_{\mu}A^{c}_\nu\partial_\lambda A^{s}_\rho\epsilon^{\mu\nu\lambda\rho} = \int \frac{\theta_0}{4{\text{π}}^2} {\rm d} A^{c}\wedge {\rm d} A^{s}.$()

    View in Article

    $ \begin{split} S_0 = &\int {\rm d}^4x \frac{\theta_0}{4{\text{π}}^2}\partial_{\mu}A^{c}_\nu\partial_\lambda A^{s}_\rho\epsilon^{\mu\nu\lambda\rho}\\ = &\int {\rm d}^4x \frac{\theta_0}{4{\text{π}}^2} ({{E}}^c \cdot{{B}}^s+ {{B}}^c\cdot{{E}}^s )\longrightarrow -S_0. \end{split} $(38)

    View in Article

    $\begin{split} & J^{s, \partial \varSigma^3}_\mu\equiv \frac{\delta S_{0, \partial\varSigma^3}}{\delta A^s_\mu} = \frac{\theta_0}{4{\text{π}}^2}\partial_\nu A^c_\lambda\epsilon^{\mu\nu\lambda}, \\ & J^{c, \partial \varSigma^3}_\mu\equiv \frac{\delta S_{0, \partial\varSigma^3}}{\delta A^c_\mu} = \frac{\theta_0}{4{\text{π}}^2}\partial_\nu A^s_\lambda\epsilon^{\mu\nu\lambda}.\end{split} $()

    View in Article

    $ J^s_\mu\equiv \frac{\delta S_0}{\delta A^s_\mu} = \frac{\theta_0}{4{\text{π}}^2}\epsilon^{\mu\nu\lambda\rho}\partial_\nu \partial_\lambda A^c_\rho $()

    View in Article

    $ J^c_\mu\equiv \frac{\delta S_0}{\delta A^c_\mu} = \frac{\theta_0}{4{\text{π}}^2}\epsilon^{\mu\nu\lambda\rho}\partial_\nu \partial_\lambda A^s_\rho.$()

    View in Article

    $J^s_0 = \frac{\theta_0}{4{\text{π}}^2}\nabla\cdot {{B}}^c,\, J^c_0 = \frac{\theta_0}{4{\text{π}}^2}\nabla\cdot {{B}}^s. $(39)

    View in Article

    $ {\cal{L}} = \frac{1}{4{\text{π}}} \epsilon^{\mu \nu \rho} \left( K_{IJ} a^I_\mu \partial_\nu a^J_\rho + 2 t_I A_\mu \partial_\nu a^I_\rho + 2 s_I \omega_\mu \partial_\nu a^I_\rho \right) .$()

    View in Article

    $ {\cal{L}} = \frac{1}{4{\text{π}}} \epsilon^{\mu \nu \rho} (t_I A_\mu + s_I \omega_\mu) \left(K^{-1}\right)^{IJ} \partial_\nu (t_J A_\rho + s_J \omega_\rho).$(40)

    View in Article

    $j_\mu = {\partial {\cal{L}} }/{\partial A^\mu} = \frac{1}{2{\text{π}}} \epsilon^{\mu \nu \rho} t_I \left(K^{-1}\right)^{IJ} \partial_\nu (t_J A_\rho + s_J \omega_\rho) .$()

    View in Article

    $ j_{s, \mu} = {\partial {\cal{L}} }/{\partial \omega^\mu} = \frac{1}{2{\text{π}}} \epsilon^{\mu \nu \rho} s_I \left(K^{-1}\right)^{IJ} \partial_\nu (t_J A_\rho + s_J \omega_\rho) .$()

    View in Article

    $ S = \; k \frac{N_0 N_1 N_2}{(2{\text{π}})^2 N_{012}} \int \omega \wedge A^1\wedge A^2. $(41)

    View in Article

    $ {\cal{J}} = \frac{1}{N_0}\int_{M^2} {\rm d}^2x \frac{\delta S}{\delta \omega_0} = k \frac{N_1 N_2}{(2{\text{π}})^2 N_{012}} \int_{M^2} {\rm d}^2x \epsilon^{ij} A^1_i A^2_j. $(42)

    View in Article

    $ {\cal{J}}_{\min} = k \frac{N_1 N_2}{(2{\text{π}})^2 N_{012}} \frac{2{\text{π}}}{N_1}\frac{2{\text{π}}}{N_2} = \frac{k}{N_{012}}. $(43)

    View in Article

    $\begin{split} {\cal{Q}}_1\; & = \frac{1}{N_1} \int_{M^2} {\rm d}^2x \frac{\delta S}{\delta A^1_0} \\ &= -k \frac{N_0 N_2}{(2{\text{π}})^2 N_{012}} \int_{M^2} {\rm d}^2x \epsilon^{ij} \omega_i A^2_j, \end{split}$(44)

    View in Article

    $ {\cal{Q}}_1 = k\dfrac{N_0 N_2}{(2{\text{π}})^2 N_{012}} \dfrac{2{\text{π}}}{N_0}\dfrac{2{\text{π}}}{N_2} = \dfrac{k }{N_{012}} .$()

    View in Article

    $ S_{\rm bulk}[ {{n}}] = \int {\rm d}^{d + 1}x \ \frac{1}{2g}( \partial^{\mu}{{n}})\cdot( \partial_{\mu}{{n}}) + S_{\theta}[ {{n}}]. $(45)

    View in Article

    $ S_{\theta}[ {{n}}] = \frac{\theta}{{\cal{A}}_{d + 1}}\int_{{\mathbb{R}}^{d,1}} {{n}}^*\omega_{d + 1}\,. $(46)

    View in Article

    $ \omega_{d + 1} = \sum_{a = 1}^{d+2} (-1)^{a-1} n_a dn_1 \wedge \cdots \wedge \overline{dn_a}\wedge \cdots\wedge dn_{d+2}. $(47)

    View in Article

    $ \begin{align} S_{\theta}[ {{n}}] = &\frac{\theta}{{\cal{A}}_{d + 1}}\int d^{d + 1}x \epsilon^{a_1\cdots a_{d+2}} n_{a_1} \partial_{x^0}n_{a_2} \partial_{x^1}n_{a_3}\cdots \\ & \partial_{x^d}n_{a_{d+2}}.\\[-12pt] \end{align} $(48)

    View in Article

    $ S_{bdy}[ {{n}}] = \int d^{d}x \frac{1}{2g_{bdy}}( \partial^{\mu}{{n}})\cdot( \partial_{\mu}{{n}}) + S_{\rm WZ}[ {{n}}]. $(49)

    View in Article

    $ \begin{align} S_{\rm WZ}[ {{n}}] = & \frac{2{\text{π}} k}{{\cal{A}}_{d + 1}}\int_0^1 {\rm d}s \int d^{d}x\ \epsilon^{a_1\cdots a_{d+2}} \tilde{n}_{a_1} \partial_{s}\tilde{n}_{a_2} \\ & \partial_{x^0}\tilde{n}_{a_3}\cdots \partial_{x^{d-1}}\tilde{n}_{a_{d+2}}\ . \\[-12pt]\end{align} $(50)

    View in Article

    $ b_{\ell} = n_{2\ell-1} + i n_{2\ell}\,\ \ell = 1,\dots,m\ . $(51)

    View in Article

    $ S_{\rm kin,gauged}[ {{n}},A] = \int d^d x \frac{1}{2g_{bdy}}\sum\limits_{\ell = 1}^{m} (D^{\mu} b_{\ell})^*(D_{\mu}b_{\ell}). $(52)

    View in Article

    $ S_{g\rm WZ}[ {{n}}, A] \to S_{g\rm WZ}[ {{n}}, A] + \delta_{\xi} S_{g\rm WZ}[A,\xi]\, $(53)

    View in Article

    $ \delta_{\xi} S_{g\rm WZ}[ {{n}}] = \frac{2{\text{π}} k}{{\cal{A}}_{3}}\frac{1}{2}\int_{{\mathbb{R}}^{1,1}} \left( {\cal{J}}_1+ {\cal{J}}_2\right)\wedge {\rm d}\xi\,. $(54)

    View in Article

    $ S^{(1)}_{ct}[ {\bf{n}},A] = -\frac{2{\text{π}} k}{{\cal{A}}_{3}}\frac{1}{2}\int_{{\mathbb{R}}^{1,1}} \left( {\cal{J}}_1+ {\cal{J}}_2\right)\wedge A\ . $(55)

    View in Article

    $ S_{g\rm WZ}[ {{n}}, A] = S_{\rm WZ}[ {{n}}] + S^{(1)}_{ct}[ {{n}},A]. $(56)

    View in Article

    $ S_{\rm bulk} = \int \frac{2k}{4{\text{π}}}A\wedge {\rm d}A\,. $(57)

    View in Article

    Peng Ye. Gauge theory of strongly-correlated symmetric topological Phases[J]. Acta Physica Sinica, 2020, 69(7): 077102-1
    Download Citation