• Acta Optica Sinica
  • Vol. 37, Issue 2, 214002 (2017)
He Kai, Miao Wenyong, Tu Shaoyong, Yuan Yongteng, He Shibei, and Yin Chuansheng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201737.0214002 Cite this Article Set citation alerts
    He Kai, Miao Wenyong, Tu Shaoyong, Yuan Yongteng, He Shibei, Yin Chuansheng. Effects of Capsule Parameters on Diagnosis of Convergent Geometry Rayleigh-Taylor Instability[J]. Acta Optica Sinica, 2017, 37(2): 214002 Copy Citation Text show less
    References

    [1] Rayleigh L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[C]. Proceedings of the London Mathematical Society, 1883, 14: 170-177.

    [2] Taylor G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes I[C]. Proceedings of the Royal Society A, 1950, 201(1065): 192-196.

    [3] Atzeni S, Meyer-ter-Vehn J. The physics of inertial fusion: beam plasma interaction hydrodynamics, hot dense mater[M]. Oxford: Oxford University Press, 2004.

    [4] Smalyuk V A, Barrios M, Caggiano J A, et al. Hydrodynamic instability growth and mix experiments at the National Ignition Facility[J]. Physics of Plasmas, 2014, 21(5): 056301.

    [5] Weber C R, Dppner T, Casey D T, et al. First measurements of fuel-ablator interface instability growth in inertial confinement fusion implosions on the National Ignition Facility[J]. Phys Rev Lett, 2016, 117(7): 075002.

    [6] Beck J B. The effects of convergent geometry on the ablative Rayleigh-Taylor instability in cylindrical implosions[D]. Purdue: Purdue University, 1996.

    [7] Yuan Yongteng, Miao Wenyong, Ding Yongkun, et al. Preliminary experimental study of Rayleigh-Taylor instability of surface perturbation target[J]. High Power Laser and Particle Beams, 2007, 19(5): 781-783.

    [8] Raman K S, Smalyuk V A, Casey D T, et al. An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility[J]. Physics of Plasmas, 2014, 21(7): 072710.

    [9] Smalyuk V A, Weber S V, Casey D T, et al. Hydrodynamic instability growth of three-dimensional, “native-roughness” modulations in X-ray driven, spherical implosions at the National Ignition Facility[J]. Physics of Plasmas, 2015, 22(7): 072704.

    [10] Wen Shuhuai, Ding Yongkun. Laser inertial confinement fusion diagnostics[M]. Beijing: National Defense Industry Press, 2012.

    [11] Remington B A, Haan S W, Glendinning S G, et al. Large growth Rayleigh-Taylor experiments using shaped laser pulses[J]. Phys Rev Lett, 1991, 67(23): 3259-3262.

    [12] Wang Wei, Yuan Ruiyang, Ye Ping. Numerical simulation study of the stability of laser-driven shock waves[J]. Acta Optica Sinica, 2015, 35(s2): s214008.

    [13] Smalyuk V A, Casey D T, Clark D S, et al. First measurements of hydrodynamic instability growth in indirectly driven implosions at ignition-relevant conditions on the National Ignition Facility[J]. Phys Rev Lett, 2014, 112(18): 185003.

    [14] Peterson J L, Casey D T, Hurricane O A, et al. Validating hydrodynamic growth in National Ignition Facility implosions[J]. Physics of Plasmas, 2015, 22(5): 056309.

    [15] Wu Junfeng. Theoretical and numerical simulation study of Rayleigh-Taylor instability in convergent geometry[D]. Beijing: China Academy of Engineering Physics, 2003.

    [16] Ofer D, Shvarts D, McCrory R L, et al. Modal model for the nonlinear multimode Rayleigh-Taylor instability[J]. Physics of Plasmas, 1996, 3(8): 3073-3090.

    He Kai, Miao Wenyong, Tu Shaoyong, Yuan Yongteng, He Shibei, Yin Chuansheng. Effects of Capsule Parameters on Diagnosis of Convergent Geometry Rayleigh-Taylor Instability[J]. Acta Optica Sinica, 2017, 37(2): 214002
    Download Citation