[1] TSAI M H, YEH J W. High-entropy alloys: a critical review[J]. Materials Research Letters, 2, 107-123(2014).
[2] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 122, 448-511(2017).
[3] HUO W Y, ZHOU H, FANG F et al. Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys[J]. Materials & Design, 134, 226-233(2017).
[4] ABHISHEK S, QINGSONG W, ALEXANDER S et al. High entropy oxides: fundamental aspects and electrochemical properties[J]. Advanced Materials, 31, 1806236-1(2019).
[5] ROST C M, SACHET E, BORMAN T et al. Entropy-stabilized oxides[J]. Nature Communications, 6, 8485(2015).
[6] ELINOR C, CSANADI TAMAS, SALVATORE G et al. Processing and properties of high-entropy ultra-high temperature carbides[J]. Scientific Reports, 8, 8609(2018).
[7] GILD J, ZHANG Y, HARRINGTON T et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Scientific Reports, 6, 37946(2016).
[8] POGREBNJAK A D, BAGDASARYAN A A, YAKUSHCHENKO I V et al. The structure and properties of high-entropy alloys and nitride coatings based on them[J]. Russian Chemical Reviews, 83, 1027-1061(2014).
[9] ZHANG R Z, GUCCI F, ZHU H et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides[J]. Inorganic Chemistry, 57, 13027-3033(2018).
[10] BÉRARDAN D, FRANGER S, MEENA A K et al. Room temperature lithium superionic conductivity in high entropy oxides[J]. Journal of Materials Chemistry A, 4, 9536-541(2016).
[11] CHEN H, QIU N, WU B Z et al. Tunable pseudocapacitive contribution by dimension control in nanocrystalline-constructed (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O solid solutions to achieve superior lithium-storage properties[J]. RSC Advances, 9, 28908-28915(2019).
[12] BÉRARDAN D, FRANGER S, DRAGOE D et al. Colossal dielectric constant in high entropy oxides[J]. Physica Status Solidi, 10, 328-333(2016).
[13] ZHANG J J, YAN J Q, CALDER S et al. Long-range antiferromagnetic order in a rocksalt high entropy oxide[J]. Chemistry of Materials, 31, 3705-3711(2019).
[14] CHEN H, FU J, ZHANG P F et al. Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability[J]. Journal of Materials Chemistry A, 6, 11129-11133(2018).
[15] CHEN H, LIN W W, ZHANG Z H et al. Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization[J]. ACS Materials Letters, 1, 83-88(2019).
[16] SARKAR A, LOHO C, VELASCO L et al. Multicomponent equiatomic rare earth oxides with narrow band gap and associated praseodymium multivalency[J]. Dalton Transactions, 46, 12167-12176(2017).
[17] GILD J, SAMIEE M, BRAUN J L et al. High-entropy fluorite oxides[J]. Journal of the European Ceramic Society, 38, 3578-3584(2018).
[18] WANG D, JIANG S D, DUAN C Q et al. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance[J]. Journal of Alloys and Compounds, 844, 156158(2020).
[19] MAO A Q, QUAN F, XIANG H Z et al. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder[J]. Journal of Molecular Structure, 1194, 11-18(2019).
[20] WANG J B, STENZEL D, AZMI R et al. Spinel to rock-salt transformation in high entropy oxides with Li incorporation[J]. Electrochem, 1, 60-74(2020).
[21] LI F, ZHOU L, LIU J X et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials[J]. Journal of Advanced Ceramics, 8, 576-582(2019).
[22] CHEN H, ZHAO Z F, XIANG H M et al. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: a novel high temperature stable thermal barrier material[J]. Journal of Materials Science & Technology, 48, 57-62(2020).
[23] JIANG S C, HU T, GILD J et al. A new class of high-entropy perovskite oxides[J]. Scripta Materialia, 142, 116-120(2018).
[24] SARKAR A, DJENADIC R, WANG D et al. Rare earth and transition metal based entropy stabilised perovskite type oxides[J]. Journal of the European Ceramic Society, 38, 2318-2327(2018).
[25] IRFAN S, AJAZUNNABI M, JAMIL Y et al. Synthesis of Mn1-xZnxFe2O4 ferrite powder by co-precipitation method[J]. IOP Conference Series: Materials Science and Engineering, 60, 12048(2014).
[26] MASASHI , KOTOBUKI , MASAKI et al. Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method[J]. Ionics, 19, 1945-1948(2013).
[27] ZHOU S Y, PU Y P, ZHANG Q W et al. Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides[J]. Ceramics International, 46, 7430-7437(2020).
[28] ZHAO S H, YANG Z B, ZHAO X M. Green preparation and supercapacitive performance of NiCo2S4@ACF heterogeneous electrode materials[J]. Journal of Inorganic Materials, 34, 130-136(2019).
[29] TAO K Y, LI P Y, KANG L T et al. Facile and low-cost combustion-synthesized amorphous mesoporous NiO/carbon as high mass-loading pseudocapacitor materials[J]. Journal of Power Sources, 293, 23-32(2015).
[30] MA X J, KONG L B, ZHANG W B et al. Design and synthesis of 3D Co3O4@MMoO4 (M=Ni, Co) nanocomposites as high-performance supercapacitor electrodes[J]. Electrochimica Acta, 130, 660-669(2014).
[31] ZHOU R, HAN C J, WANG X M. Hierarchical MoS2-coated three-dimensional graphene network for enhanced supercapacitor performances[J]. Journal of Power Sources, 352, 99-110(2017).
[32] HUO H H, ZHAO Y Q, XU C L. 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection[J]. Journal of Materials Chemistry A, 2, 15111-15117(2014).
[33] ZHANG L X, ZHENG W H, JIU H F et al. The synthesis of NiO and NiCo2O4 nanosheets by a new method and their excellent capacitive performance for asymmetric supercapacitor[J]. Electrochimica Acta, 215, 212-222(2016).
[34] ZHANG G X, CHEN Y M, HE Z N et al. Surfactant dependence of nanostructured NiCo2S4 films on Ni foam for superior electrochemical performance[J]. Journal of Inorganic Materials, 33, 289-294(2018).