• Chinese Optics Letters
  • Vol. 20, Issue 11, 111301 (2022)
Hailong Han1、2, Hao Li1、2, Lixing You1、2, and Xiaoping Liu3、*
Author Affiliations
  • 1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China
  • 2CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
  • 3School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • show less
    DOI: 10.3788/COL202220.111301 Cite this Article Set citation alerts
    Hailong Han, Hao Li, Lixing You, Xiaoping Liu. Fabrication and characterization of on-chip silicon spherical-like microcavities with high Q-factors[J]. Chinese Optics Letters, 2022, 20(11): 111301 Copy Citation Text show less
    References

    [1] K. J. Vahala. Optical microcavities. Nature, 424, 839(2003).

    [2] J. Ward, O. Benson. WGM microresonators: sensing, lasing and fundamental optics with microspheres. Laser Photonics Rev., 5, 553(2011).

    [3] M. Cai, O. Painter, K. J. Vahala, P. C. Sercel. Fiber-coupled microsphere laser. Opt. Lett., 25, 1430(2000).

    [4] T. Bilici, S. Isci, A. Kurt, A. Serpengüzel. Microsphere-based channel dropping filter with an integrated photodetector. IEEE Photon. Tech. Lett., 16, 476(2004).

    [5] M. Cai, G. Hunziker, K. J. Vahala. Fiber-optic add-drop device based on a silica microsphere-whispering gallery mode system. IEEE Photon. Technol. Lett., 11, 686(1999).

    [6] H. C. Tapalian, J. P. Laine, P. A. Lane. Thermooptical switches using coated microsphere resonators. IEEE Photon. Technol. Lett., 14, 1118(2002).

    [7] I. Teraoka, S. Arnold, F. Vollmer. Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium. J. Opt. Soc. Am. B, 20, 1937(2003).

    [8] J. P. Laine, C. Tapalian, B. Little, H. Haus. Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler. Sens. Actuators A Phys., 93, 1(2001).

    [9] A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, L. Maleki. Optical gyroscope with whispering gallery mode optical cavities. Opt. Commun., 233, 107(2004).

    [10] H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, K. J. Vahala. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics, 6, 369(2012).

    [11] M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko. Ultimate Q of optical microsphere resonators. Opt. Lett., 21, 453(1996).

    [12] D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925(2003).

    [13] R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, T. J. Kippenberg. Near-field integration of a SiN nanobeam and a SiO2 microcavity for Heisenberg-limited displacement sensing. Phys. Rev. Appl., 5, 054019(2016).

    [14] M. Pöllinger, D. O’Shea, F. Warken, A. Rauschenbeutel. Ultrahigh-Q tunable whispering-gallery-mode microresonator. Phys. Rev. Lett., 103, 053901(2009).

    [15] S. I. Shopova, H. Zhou, X. Fan, P. Zhang. Optofluidic ring resonator based dye laser. Appl. Phys. Lett., 90, 221101(2007).

    [16] Y. Yang, S. Saurabh, J. M. Ward, S. N. Chormaic. High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing. Opt. Express, 24, 294(2016).

    [17] R. Shankar, R. Leijssen, I. Bulu, M. Lončar. Mid-infrared photonic crystal cavities in silicon. Opt. Express, 19, 5579(2011).

    [18] C. Reimer, M. Nedeljkovic, D. J. M. Stothard, M. O. S. Esnault, C. Reardon, L. O’Faolain, M. Dunn, G. Z. Mashanovich, T. F. Krauss. Mid-infrared photonic crystal waveguides in silicon. Opt. Express, 20, 29361(2012).

    [19] G. P. Agrawal. Nonlinear Fiber Optics(1995).

    [20] S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, M. Lipson. Low-loss silicon platform for broadband mid-infrared photonics. Optica, 4, 707(2017).

    [21] K. Srinivasan, H. X. Miao, M. T. Rakher, M. Davanco, V. Aksyuk. Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator. Nano Lett., 11, 791(2011).

    [22] M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. Marsal, F. Meseguer. All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region. Nat. Commun., 5, 3440(2014).

    [23] R. Fenollosa, F. Meseguer, M. Tymczenko. Silicon colloids: from microcavities to photonic sponges. Adv. Mater., 20, 95(2008).

    [24] S. C. Hung, S. C. Shiu, C. H. Chao, C. F. Lin. Fabrication of crystalline Si spheres with atomic-scale surface smoothness using homogenized KrF excimer laser reformation system. J. Vac. Sci. Technol. B, 27, 1156(2009).

    [25] J. Wu, Y. Huang, Y. Lin, Q. Li, J. Huang, T. Wu, C. Guo. Whispering gallery modes from silicon microsphere in C-band. IEEE Photon. Technol. Lett., 27, 1993(2015).

    [26] X. Li, A. Pyatenko, Y. Shimizu, H. Wang, K. Koga, N. Koshizaki. Fabrication of crystalline silicon spheres by selective laser heating in liquid medium. Langmuir, 27, 5076(2011).

    [27] J. Takahashi, T. Tsuchizawa, T. Watanabe, S. Itabashi. Oxidation-induced improvement in the sidewall morphology and cross-sectional profile of silicon wire waveguides. J. Vac. Sci. Technol. B, 22, 2522(2004).

    [28] D. K. Sparacin, S. J. Spector, L. C. Kimerling. Silicon waveguide sidewall smoothing by wet chemical oxidation. J. Light. Technol., 23, 2455(2005).

    [29] H. Kuribayashi, R. Hiruta, R. Shimizu, K. Sudoh, H. Iwasaki. Shape transformation of silicon trenches during hydrogen annealing. J. Vac. Sci. Technol. A, 21, 1279(2003).

    [30] H. Hara, Y. Sano, K. Arima, K. Yagi, J. Murata, A. Kubota, H. Mimura, K. Yamauchi. Catalyst-referred etching of silicon. Sci. Technol. Adv. Mater., 8, 162(2007).

    [31] J. C. Knight, G. Cheung, F. Jacques, T. A. Birks. Phase-matched excitation of whispering gallery modes by a fiber taper. Opt. Lett., 22, 1129(1997).

    [32] Y. Chen, Y. Yin, L. Ma, O. G. Schmidt. Recent progress on optoplasmonic whispering-gallery-mode microcavities. Adv. Opt. Mater., 9, 2100143(2021).

    Data from CrossRef

    [1] Xiangzheng Li, Bowen Cui, Peizhen Xu, Yu Xie, Pan Wang, Limin Tong, Xin Guo.

    [1] Xiangzheng Li, Bowen Cui, Peizhen Xu, Yu Xie, Pan Wang, Limin Tong, Xin Guo.

    [1] Xiangzheng Li, Bowen Cui, Peizhen Xu, Yu Xie, Pan Wang, Limin Tong, Xin Guo.

    [1] Xiangzheng Li, Bowen Cui, Peizhen Xu, Yu Xie, Pan Wang, Limin Tong, Xin Guo.

    [1] Xiangzheng Li, Bowen Cui, Peizhen Xu, Yu Xie, Pan Wang, Limin Tong, Xin Guo.

    [1] Xiangzheng Li, Bowen Cui, Peizhen Xu, Yu Xie, Pan Wang, Limin Tong, Xin Guo.

    [1] Xiangzheng Li, Bowen Cui, Peizhen Xu, Yu Xie, Pan Wang, Limin Tong, Xin Guo.

    [1] Xiangzheng Li, Bowen Cui, Peizhen Xu, Yu Xie, Pan Wang, Limin Tong, Xin Guo.

    [1] Xiangzheng Li, Bowen Cui, Peizhen Xu, Yu Xie, Pan Wang, Limin Tong, Xin Guo.

    [1] Xiangzheng Li, Bowen Cui, Peizhen Xu, Yu Xie, Pan Wang, Limin Tong, Xin Guo.

    [1] Xiangzheng Li, Bowen Cui, Peizhen Xu, Yu Xie, Pan Wang, Limin Tong, Xin Guo.

    [1] Xiangzheng Li, Bowen Cui, Peizhen Xu, Yu Xie, Pan Wang, Limin Tong, Xin Guo.

    Hailong Han, Hao Li, Lixing You, Xiaoping Liu. Fabrication and characterization of on-chip silicon spherical-like microcavities with high Q-factors[J]. Chinese Optics Letters, 2022, 20(11): 111301
    Download Citation